Problem set 1

- 1. Consider the space $X := \Delta^n/\partial \Delta^n \approx S^n$ for $n \geq 0$. Denote by $* \in X$ the point corresponding to $\partial \Delta^n$. The quotient map $\sigma_n : \Delta^n \to X$, viewed as a singular *n*-simplex, is a cycle in $S_n(X,*)$.
 - (a) Show that $[\sigma_n]$ generates $H_n(X, *; \mathbb{Z}) \cong \widetilde{H}_n(X; \mathbb{Z}) \cong \mathbb{Z}$.
 - (b) Let G be an abelian group. Then for all $g \in G$, $g \cdot \sigma_n$ is a cycle in $S_n(X, *; G)$. Show that the map

$$G \longrightarrow H_n(X, *; G)$$

 $g \longmapsto [g \cdot \sigma_n]$

is an isomorphism.

2. Consider the space $Y \approx S^n$ obtained by gluing two copies Δ^n_{\pm} of Δ^n along their boundaries (using the identity map). Consider the obvious singular simplices $\tau_{\pm}:\Delta^n\to Y$ mapping to the subsets $\Delta^n_{\pm}\subset Y$. Check that $\tau_{+}-\tau_{-}$ is a cycle and prove that $[\tau_{+}-\tau_{-}]$ generates $\widetilde{H}_n(Y;\mathbb{Z})$.

Hint: Use the Mayer-Vietoris sequence.

3. Let $\pi\colon X\to Y$ be a 2:1 covering. Recall the short exact sequence of chain complexes

$$0 \to S.(Y; \mathbb{Z}_2) \xrightarrow{T} S.(X; \mathbb{Z}_2) \xrightarrow{\pi_c} S.(Y; \mathbb{Z}_2) \to 0$$

and its associated long exact sequence in homology. (These sequences are called Smith short/long exact sequence.) Show that

- (a) $T \circ \pi_c = id + \Theta_c$, where $\Theta \colon X \to X$ is the unique non-trivial deck transformation of π .
- (b) Assume that $H_i(X; \mathbb{Z}_2) = \mathbb{Z}_2$ for some i. Show that $T_* \circ \pi_* = 0$ in degree i.
- 4. Suppose you know that $H_k(\mathbb{R}P^n; \mathbb{Z}_2) = 0$ for all k > n. Use the Smithsequence for this covering to compute $H_k(\mathbb{R}P^n; \mathbb{Z}_2)$ for $0 \le k \le n$.
- 5. Let $f: \mathbb{R}P^n \to \mathbb{R}P^m$ be any map, where n > m > 0. Show that the induced map $f_{\#}: \pi_1(\mathbb{R}P^n) \to \pi_1(\mathbb{R}P^m)$ is trivial.
- 6. Show that $\mathbb{R}P^2$ is not a retract of $\mathbb{R}P^3$.

- 7. The Borsuk-Ulam theorem says that for every map $f: S^n \to \mathbb{R}^n$ there exists a point $x \in S^n$ such that f(x) = f(-x). Give a proof of the theorem based on the following steps:
 - (a) Let $g: S^n \to S^n$ be an odd map, i.e., such that g(-x) = -g(x) for all $x \in S^n$. Show that g induces a natural homomorphism from the Smith sequence for $S^n \to \mathbb{R}P^n$ to itself in which all squares commute.
 - (b) Conclude that every odd $g: S^n \to S^n$ has odd degree.
 - (c) Conclude the proof of the theorem.
- 8. Use Borsuk-Ulam to prove that whenever there exists a map $\phi: S^n \to S^m$ which is equivariant with respect to the antipodal maps, then $n \leq m$.
- 9. Use Borsuk-Ulam to prove the following: Given Lebesgue measurable subsets bounded subsets A_1, \ldots, A_m of \mathbb{R}^m , there exists a hyperplane $H \subset \mathbb{R}^m$ which divides each A_i into pieces of equal measure. (This is known as the "Ham Sandwich Theorem".)
- 10. Consider $\mathbb{R}P^k = S^k/(x \sim -x)$, and denote by $q \colon S^k \to \mathbb{R}P^k$ the quotient map. View $\mathbb{R}P^{k-1}$ as a subspace of $\mathbb{R}P^k$ as follows: Let $S^{k-1}_{Eq} \subset S^k$ be the equator

 $S_{Eq}^{k-1} = \{(x_1, \dots, x_{k+1} \in S^k | x_{k+1} = 0\}.$

Then $q(S_{Eq}^{k-1}) \subset \mathbb{R}P^k$ is homeomorphic in an obvious way to $\mathbb{R}P^{k-1}$ - Consider the space $\mathbb{R}P^k/\mathbb{R}P^{k-1}$ and the quotient map $q' \colon \mathbb{R}P^k \to \mathbb{R}P^k/\mathbb{R}P^{k-1}$. Denote by

$$B_+^k := \{(x_1, \dots, x_{k+1}) \in S^k | x_{k+1} \ge 0\} \subset S^k$$

the closed upper hemisphere and similarly by B_-^k the closed lower hemisphere.

(a) Show that there exists a homeomorphism $\phi \colon \mathbb{R}P^k/\mathbb{R}P^{k-1} \to S^k$ such that the composition of maps

$$f := \left(S^k \xrightarrow{q} \mathbb{R}P^k \xrightarrow{q'} \mathbb{R}P^k / \mathbb{R}P^{k-1} \xrightarrow{\phi} S^k \right)$$

sends each open hemisphere $Int(B_{\pm}^k) \subset S^k$ homeomorphically onto $S^k \setminus \{\text{point}\}.$

(b) Show that $\deg(f) = \pm \left(1 + (-1)^{k+1}\right)$. (The \pm depends on the choice of ϕ .)

Hint: Use local degrees.

(c) Consider the space

$$\mathbb{R}P^k \cup_{h_\partial} B^{k+1},$$

where the attaching map $h_{\partial} \colon \partial B^{k+1} = S^k \to \mathbb{R}P^k$ is the quotient map q. Show that there exists a homeomorphism

$$(\mathbb{R}P^k \cup_{h_{\partial}} B^{k+1}, \mathbb{R}P^k) \approx (\mathbb{R}P^{k+1}, \mathbb{R}P^k)$$

which is the identity on $\mathbb{R}P^k$.

(d) Endow $\mathbb{R}P^n$ with the structure of an *n*-dimensional CW-complex X with one j-cell in each dimension $0 \le j \le n$, as follows:

$$X^{(0)} = \mathbb{R}P^0 = 1 \text{ point},$$

$$\dots$$

$$X^{(k)} \approx \mathbb{R}P^k,$$

$$X^{(k+1)} \approx \mathbb{R}P^k \cup_{h_{\partial}} B^{k+1} \approx \mathbb{R}P^{k+1},$$

$$\dots$$

$$X^{(n)} \approx \mathbb{R}P^{n-1} \cup_{h_{\partial}} B^n \approx \mathbb{R}P^n.$$

(e) Consider the cellular chain complex $C^{\mathrm{CW}}_{ullet}(X)$ of the CW-complex described in (c). Denote by $e^{(k)}$ the generator of $C^{\mathrm{CW}}_k(X)$, corresponding to the k-dimensional cell, so that $C^{\mathrm{CW}}_k(X) = \mathbb{Z}e^{(k)}$. Calculate the differential $d\colon C^{\mathrm{CW}}_{k+1}(X) \to C^{\mathrm{CW}}_k(X)$.