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Solutions to problem set 1

1. (a) Consider the diagram

Hn(∆
n, ∂∆n)

∼= //

∼=
��

H̃n−1(∂∆
n)

Hn(∆
n/∂∆n, ∗)

(1)

The horizontal map is the boundary map from the (reduced) LES for the pair (∆n, ∂∆n),

which is an isomorphism by looking at the neighbouring terms in the LES. The vertical

map is induced by the quotient map (∆n, ∂∆n) → (∆n/∂∆n, ∗) and is an isomorphism

since (∆n, ∂∆n) is a good pair.

Consider now the tautological n-simplex αn : ∆n → ∆n, which defines a class [αn] ∈
Hn(∆

n, ∂∆n). The image of [αn] under the vertical map is [σn] ∈ Hn(∆
n/∂∆n, ∗),

while its image under the horizontal map is the class [βn−1] ∈ H̃n−1(∂∆
n) with

βn−1 = ∂n αn =

n∑
i=0

(−1)iFn
i ∈ Cn−1(∂∆

n),

where Fn
i : ∆n−1 → ∂∆n is the i-th face map of the simplex ∆n. So once we

know that [βn−1] generates H̃n−1(∂∆
n), we can conclude from (??) that [σn] generates

Hn(∆
n/∂∆n, ∗).

It is clear that [β0] generates H̃0(∂∆
1), so we know that [σ1] generates H1(∆

1/∂∆1, ∗),
which is what the problem asks us to prove for n = 1. We now proceed by induc-

tion; for the inductive step, consider the map ϕ : ∂∆n → ∆n−1/∂∆n−1 which col-

lapses all except the zero-th face to a point, and the induced map ϕ∗ : Hn−1(∂∆
n) →

Hn−1(∆
n−1/∂∆n−1, ∗). Observe that ϕ∗[βn−1] = [σn−1]; since [σn−1] generates by

inductive assumption, we conclude that [βn−1] generates.

(b) Analogous to (a). In summary, there are isomorphisms

Hn(∆
n/∂∆n, ∗;G) Hn(∆

n, ∂∆n;G)
q∗

∼=oo ∂∗

∼=
// H̃n−1(∂∆

n;G)
ϕ∗

∼=
// Hn−1(∆

n−1/∂∆n−1, ∗;G)

[gσn] [gαn]oo // [gβn−1] // [gσn−1]

and

G −→ H̃0(∂∆
0;G)

g 7−→ [gβ0].

2. Consider the cover of Y given by the subsets A = ∆n
+ and B = ∆n

−. Both are contractible

and we have A ∩ B = ∂∆n, so that the relevant piece of the corresponding reduced MV

sequence reads

0 → H̃n(Y )
∂∗−→ H̃n−1(∂∆

n) → 0

Note that ∂∗[τ+ − τ−] = [∂τ+] = [βn−1] ∈ H̃n−1(∂∆
n) with βn−1 ∈ Cn−1(∂∆

n) defined as

in the solution to the previous problem. Since [βn−1] generates (see the previous problem)

we deduce that [τ+ − τ−] generates.
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We give an alternative inductive proof that [βn] generates H̃n−1(∂∆
n) using the Mayer-

Vietoris sequence. For n = 0 the statement is clear. For the inductive step, consider the

cover of ∂∆n+1 given by A := imFn+1
0 and B := ∂∆n+1 \ intA (the interiors don’t cover

all of ∂∆n+1, but that can be repaired by taking small thickenings of A and B). Since both

A and B are contractible, the corresponding reduced MV sequence splits into pieces of the

form

0 → H̃n(∂∆
n+1)

∼=−→ H̃n−1(A ∩B) → 0

Note that we can identify A ∩ B = ∂A with ∂∆n via Fn+1
0 |∂∆n . By definition of the MV

boundary map ∂∗ : H̃n(∂∆
n+1) → H̃n−1(A ∩ B), we have ∂∗[βn] = [∂Fn+1

0 ], which in our

identification A ∩ B ∼= ∂∆n is [βn−1]. Since ∂∗ is an isomorphism and [βn−1] generates

H̃n−1(∂∆
n) by inductive assumption, it follows that [βn] generates H̃n(∂∆

n+1).

3. (a) Let σ̃ : ∆k → X be a singular simplex. Then

T ◦ πc(σ̃) = σ̃ +Θ ◦ σ̃,

because σ̃ and Θ ◦ σ̃ are the two liftings of π ◦ σ̃. Passing to homology, it follows that

T∗ ◦ π∗ = id+Θ∗.

(b) If Hi(X;Z2) ∼= Z2, then Θ∗ : Hi(X;Z2) → Hi(X;Z2) is the identity. ( Θ∗ is an iso-

morphism and id is the only isomorphism on Z2.) So T∗ ◦ π∗ = id + id = 0 in degree

i.

4. In the following, all homology groups have Z2 coefficients. Given that Hk(RPn) = 0 for

k > n by assumption, the leftmost piece of the Smith sequence for the cover p : Sn → RPn

looks like

0 → Hn(RPn)
t∗−→ Hn(S

n)
p∗−→ Hn(RPn)

∂∗−→ Hn−1(RPn) → Hn−1(S
n) = 0 → . . .

Here t∗ is induced by the map C∗(RPn) → C∗(S
n) taking a simplex σ : ∆k → RP k to

σ̃ + α ◦ σ̃, where σ̃ : ∆n → Sn is one of the two possible lifts of σ to Sn and where

α : Sn → Sn denotes the antipodal map. Note that we have t∗ ◦ p∗ = (id + α∗) : H∗(S
n) →

H∗(S
n), which implies t∗ ◦ p∗ = 0 because α∗ = id : H∗(S

n) → H∗(S
n) (because α∗

is an involution and Hk(S
n) either vanishes or is Z2 ). This together with the fact that

t∗ : Hn(RPn) → Hn(S
n) is injective implies that p∗ : Hn(S

n) → Hn(RPn) vanishes, and

hence t∗ : Hn(RPn) → Hn(S
n) ∼= Z2 is an isomorphism. Moreover, p∗ = 0 implies that

∂∗ : Hn(RPn) → Hn−1(RPn) is an isomorphism, and the same is true for ∂ : Hk(RPn) →
Hk−1(RPn) for k > 0 since H∗(S

n) = 0 except in degrees 0 and n. Inductively we obtain

Hk(RPn) ∼= Z2 for all 0 ≤ k ≤ n.

5. Recall that π1(RP 1) ∼= π1(S
1) ∼= Z, π1(RPn) ∼= Z2 and π1(S

n) = 0 for n > 1. Hence, if

m = 1 the only homomorphism π1(RPn) ∼= Z2 → π1(RP 1) ∼= Z is the trivial homomorphism.

So from now on we may assume that we have n > m > 1.

Sn f̃ //

pn

��

Sm

pm

��
RPn f // RPm

For any n > m > 1 we have

f# ◦ pn#(π1(S
n)) = {1} = pm#(π1(S

m))
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and f ◦ pn : Sk → RPm always lifts to a map f̃ : Sn → Sm.

A generator of π1(RPn) is represented by a loop that lifts to a path in Sn connecting two

antipodal points (see also Hatcher example 1.43). The homomorphism f# : π1(RPn) ∼=
Z2 → π1(RPm) ∼= Z2 can either be an isomorphism or trivial.

f induces an isomorphism f#

⇐⇒ ∀ path γ : [0, 1] → Sn connecting antipodal points:

f#([p
n ◦ γ]) = [f ◦ pn ◦ γ] = pm# [f̃ ◦ γ] ∈ π1(RPm)\{0} ∼= Z2\{0}

⇐⇒ ∀ path γ : [0, 1] → Sn connecting antipodal points:

f̃ ◦ γ : [0, 1] → Sm connects antipodal points

⇐⇒ the lift f̃ : Sn → Sm is equivariant.

But, since n > m, by Bredon Theorem 20.1 the map f̃ cannot be equivariant. Therefore,

the induced map f# must be trivial.

6. Assume that r : RP 3 → RP 2 is a retraction and denote by i : RP 2 ↪→ RP 3 the inclusion.

Then we have r ◦ i = idRP 2 and hence (r ◦ i)# = id : π1(RP 2) → π1(RP 2), which is non-zero

because π1(RP 2) = H1(RP 2;Z) = Z2. On the other hand, we have (r ◦ i)# = r# ◦ i# = 0

since r# = 0 by the previous exercise. That is a contradiction.

7. Cf. the proof of Borsuk-Ulam in [Hatcher, pp. 174-176]!

8. Let n > m and supposed that there exists an equivariant map ϕ : Sn → Sm, i.e., such that

ϕ(−x) = −ϕ(x) for all x. Consider the map f : Sm+1 → Rm+1 obtained by composing

the restriction of ϕ to Sm+1 ⊆ Sn with the inclusion Sm ↪→ Rm+1. This map satisfies

f(−x) = −f(x) for all x ∈ Sm+1. Since f(x) ∈ Sm and hence f(x) ̸= −f(x), we conclude

f(−x) ̸= f(x) for all x ∈ Sm+1, which contradicts the Borsuk-Ulam theorem.

9. Cf. [Bredon, Corollary IV.20.4]!

10. (a) For z ∈ RP k choose x ∈ Bk
+ such that z = [x]. We define ϕ(z) to be the point in Sk

obtained from moving x down towards the South Pole S doubling the distance to the

North Pole. (Explicitely for e.g. S2, write x in spherical coordinates (φ, θ) and define

ϕ(z) = (φ, 2θ) ∈ Sk.) ϕ : RP k → Sk descends to a homeomorphism RP k/RP k−1 → Sn.

f maps Int(Bk
±) homeomorphically onto Sk\{S}.

(b) The North Pole N has two preimages under f : N and S. Near N , f is an orientation-

preserving homeomorphism and hence the local degree at N is 1. Near S, f is the

composition of the antipodal map with f near N . Hence the local degree at S is

(−1)k+1. We conclude deg(f) = 1 + (−1)k+1.

Remark. There are many choices for ϕ. One could for example also define ϕ′ using

ϕ′(z) = (−φ, 2θ). Then f has local degree −1 near N and local degree −(−1)k+1 near

S. So for that choice, deg(f) = −(1 + (−1)k+1).

However, for any choice of ϕ as in (a), one has deg(f) = ±(1 + (−1)k+1). The reason

is, that f is a homeomorphism near N and a homeomorphism near S. Moreover, these
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two homeomorphisms are related by the antipodal map because f factors through RP k.

So if one of the local degrees is 1, then the other local degree will be (−1)k+1 and if

one of the local degrees is −1, then the other local degree will be −(−1)k+1.

(c) We define a homeomorphism g : RP k ∪h∂
Bk+1 → RP k. g is the identity on RP k. To

define what g does on Bk+1, let j : Bk+1 → Sk+1 be the inclusion of Bk+1 ≈ Bk+1
+ into

Sk+1. Then g is defined to be q◦j on Bk+1. One can check, that this gives a well-defined

continuous bijective map g : RP k ∪h∂
Bk+1 → RP k+1. Hence h is a homeomorphism.

(e) We compute

d(e(k+1)) = deg(f)e(k) = (1 + (−1)k+1)e(k) =

{
2e(k) if k is odd

0 if k is even.
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