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Solutions to problem set 1

1. (a) Consider the diagram

~

H, (A" 0A™) — > H,_1(0A")
lg (1)
H, (A" /A", %)

The horizontal map is the boundary map from the (reduced) LES for the pair (A™, dA™),
which is an isomorphism by looking at the neighbouring terms in the LES. The vertical
map is induced by the quotient map (A™ dA™) — (A™/OA™, x) and is an isomorphism
since (A™,0A™) is a good pair.

Consider now the tautological n-simplex v, : A™ — A™, which defines a class [«,] €
H,(A™,0A™). The image of [a,] under the vertical map is [0,] € H, (A" /OA™, %),
while its image under the horizontal map is the class [8,_1] € H,_1(DA™) with

Buo1 = On o =Y (—1)'F" € C,,_1 (0A™),
i=0

where F* : A""! — QA" is the i-th face map of the simplex A™. So once we
know that [3,_1] generates H,_1(OA™), we can conclude from (??) that [o,,] generates
H,(A™JOA™ %).

It is clear that [Bo] generates Ho(9A), so we know that [o] generates Hy(A!/OAL, %),
which is what the problem asks us to prove for n = 1. We now proceed by induc-
tion; for the inductive step, consider the map ¢ : JA™ — A"~1/GA"~1 which col-
lapses all except the zero-th face to a point, and the induced map ¢, : H,_1(OA™) —
H,_1(A"1/0A™ 1 %). Observe that ¢.[B,_1] = [0n_1]; since [0},_1] generates by
inductive assumption, we conclude that [5,,_1] generates.

(b) Analogous to (a). In summary, there are isomorphisms

Hy 1 (0A™G) % H,y 1 (A1 JOA™ 1 % G)

o

H, (A" JOA™, x; G)

Shie
WP

H, (A", 0A™; G)

[gom] [gan] [98n—1] lgos—1]

and
G — Hy(0A%;G)
g — [9Bo]-

2. Consider the cover of Y given by the subsets A = A"t and B = A”. Both are contractible
and we have A N B = JA"™, so that the relevant piece of the corresponding reduced MV
sequence reads

0— Ho(Y) L Hyo1(9A™) — 0

Note that ,[ry — 7_] = [074] = [Bu_1] € Hp_1(dA™) with B,_; € Cp_1(JA™) defined as
in the solution to the previous problem. Since [3,_1] generates (see the previous problem)
we deduce that [7y — 7_] generates.



We give an alternative inductive proof that [8,] generates H,_1(OA™) using the Mayer-
Vietoris sequence. For n = 0 the statement is clear. For the inductive step, consider the
cover of AT given by A := im F* and B := 0A™! \ int A (the interiors don’t cover
all of DA™ +L, but that can be repaired by taking small thickenings of A and B). Since both
A and B are contractible, the corresponding reduced MV sequence splits into pieces of the
form

0 — H,(0A™) = H, 1(ANB) =0

Note that we can identify A N B = 0A with 0A™ via F61+1|6An. By definition of the MV
boundary map 8, : H,(8A™) — H,_1(AN B), we have 8,[8,] = [0F""], which in our
identification AN B = 9A™ is [8,-1]. Since 0, is an isomorphism and [3,_1] generates
H,,_1(dA™) by inductive assumption, it follows that [3,] generates H, (A1),

(a) Let 5: AF — X be a singular simplex. Then
Torn.(6)=0+0Oo07,

because ¢ and © o & are the two liftings of 7 o 6. Passing to homology, it follows that
T, om, =id+ O,.

(b) If H{(X;Zsy) = Zso, then O,: H;(X;Z2) — H;(X;Zs) is the identity. ( O, is an iso-
morphism and ¢d is the only isomorphism on Zs.) So Ty o m, = id + id = 0 in degree
i.

. In the following, all homology groups have Zs coefficients. Given that Hp(RP™) = 0 for
k > n by assumption, the leftmost piece of the Smith sequence for the cover p : S™ — RP"™
looks like

0 — H,(RP™) 225 H,(S™) 25 H,(RP™) 25 Hy ((RP™) — H,_1(S™) =0 — ...

Here t, is induced by the map C,(RP") — C,(S™) taking a simplex o : A*¥ — RP* to
0+ «aod, where 6 : A™ — S™ is one of the two possible lifts of o to S™ and where
a: S™ — S™ denotes the antipodal map. Note that we have t, o p, = (id + ) : H (S™) —
H,(S™), which implies ¢, o p, = 0 because o, = id : H,.(S") — H.(S™) (because a
is an involution and Hy(S™) either vanishes or is Zo ). This together with the fact that
te : Hy(RP™) — H,(S™) is injective implies that p, : H,(S™) — H,(RP™) vanishes, and
hence t,. : H,(RP™) — H,(S™) = Zy is an isomorphism. Moreover, p, = 0 implies that
0y : H,(RP") — H,_1(RP™) is an isomorphism, and the same is true for 0 : H,(RP™) —
Hy_1(RP™) for k > 0 since H,(S™) = 0 except in degrees 0 and n. Inductively we obtain
Hi(RP™) =7y for all 0 < k <n.

. Recall that 71 (RP) = 7,(S') = Z, m (RP™) 2 Zy and 71(S™) = 0 for n > 1. Hence, if
m = 1 the only homomorphism 71 (RP") & Zy — 71 (RP!) = Z is the trivial homomorphism.
So from now on we may assume that we have n > m > 1.

Sn**f*>5m

For any n > m > 1 we have

S opg(m(S™)) = {1} = p(m(5™))



10.

and fop": S* — RP™ always lifts to a map f : S™ — S™.
A generator of 7 (RP™) is represented by a loop that lifts to a path in S™ connecting two

antipodal points (see also Hatcher example 1.43). The homomorphism fyg : m(RP") =
Zy — m (RP™) & Zy can either be an isomorphism or trivial.

f induces an isomorphism fy4
<=V path v :[0,1] — S™ connecting antipodal points:
Fa(p" on]) = [f op™ on] = pE1f 0 7] € m(RP™)\{0} = Z>\{0}
=V path v
7v:[0,1]

<= the lift f : 8" — S™ is equivariant.

0,1] — S™ connecting antipodal points:

— 8™ connects antipodal points

But, since n > m, by Bredon Theorem 20.1 the map f cannot be equivariant. Therefore,
the induced map fx must be trivial.

Assume that r : RP? — RP? is a retraction and denote by i : RP? — RP? the inclusion.
Then we have roi = idgpz and hence (roi)y =id : m (RP?) — 7 (RP?), which is non-zero
because m1(RP?) = H1(RP?;Z) = Zs. On the other hand, we have (rod)y = ryoiy =0
since ryx = 0 by the previous exercise. That is a contradiction.

Cf. the proof of Borsuk-Ulam in [Hatcher, pp. 174-176]!

Let n > m and supposed that there exists an equivariant map ¢ : S™ — S™, i.e., such that
¢(—x) = —¢(z) for all x. Consider the map f : S™F1 — R™*! obtained by composing
the restriction of ¢ to S™*! C S™ with the inclusion §™ < R™*!. This map satisfies
f(—z) = —f(z) for all x € S™T!. Since f(z) € S™ and hence f(z) # —f(z), we conclude
f(=z) # f(x) for all x € S™"1 which contradicts the Borsuk-Ulam theorem.

Cf. [Bredon, Corollary IV.20.4]!

(a) For z € RP* choose z € B¥ such that z = [z]. We define ¢(z) to be the point in S*
obtained from moving x down towards the South Pole S doubling the distance to the
North Pole. (Explicitely for e.g. S2, write z in spherical coordinates (p, ) and define
#(2) = (p,20) € S*.) ¢: RP¥ — S* descends to a homeomorphism RP* /RPk=1 — g,

f maps Int(B%) homeomorphically onto S¥\{S}.

(b) The North Pole N has two preimages under f: N and S. Near N, f is an orientation-
preserving homeomorphism and hence the local degree at N is 1. Near S, f is the
composition of the antipodal map with f near N. Hence the local degree at S is
(—1)**1. We conclude deg(f) =1 + (—1)**1,

Remark. There are many choices for ¢. One could for example also define ¢’ using
#'(2) = (—,20). Then f has local degree —1 near N and local degree —(—1)**! near
S. So for that choice, deg(f) = —(1 + (—=1)¥*+1).

However, for any choice of ¢ as in (a), one has deg(f) = +(1 + (—1)**!). The reason
is, that f is a homeomorphism near N and a homeomorphism near S. Moreover, these



two homeomorphisms are related by the antipodal map because f factors through RP*.
So if one of the local degrees is 1, then the other local degree will be (—1)**! and if
one of the local degrees is —1, then the other local degree will be —(—1)*+1,

(c) We define a homeomorphism g: RP* Uy, B¥*t — RP*. g is the identity on RP*. To
define what g does on B**1, let j: BF+1 — S*+1 be the inclusion of B**! ~ B! into
Sk+1. Then g is defined to be goj on B**!. One can check, that this gives a well-defined
continuous bijective map ¢g: RP* Uhy BFt1 5 RP*+1. Hence h is a homeomorphism.

(e) We compute

2¢(k) if k is odd

(D) = deg()e®) = (14 (~1)4+1)elh) =
0 if k is even.



