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Solutions to problem set 4

1. Let N be an orientable manifold and let f : M → N be a covering map. Then M is

also a manifold as f is a local homeomorphism. We now explain how to construct an

orientation of M from a given orientation of N . To do so, let x ∈ M and fix an open ball

B ∋ x which gets mapped by f homeomorphically onto f(B). This induces an identification

Hn(M |x) ∼= Hn(N |f(x)) using the isomorphisms

Hn(M |x)← Hn(B|x)→ Hn(f(B)|f(x))→ Hn(N |f(x)),

and hence a given local orientation µf(x) ∈ Hn(N |f(x)) at f(x) induces a local orientation

µx ∈ Hn(M |x) at x. (This is in fact independent of the chosen ball: Given two balls B0, B1

around x as above, choose another ball B01 ⊂ B0∩B1 around x and consider the commutative

diagram obtained via the inclusions B01 → Bi → M and f(B01) → f(Bi) → N ...) It

remains to show that these local orientations satisfy the local consistency condition required

in the definition of an orientation. Choose another ball C around x such that C ⊂ B

and choose a generator µf(C) ∈ Hn(N |f(C)) such that for every point y ∈ C, the map

Hn(N |f(C))→ Hn(N |f(y)) takes µf(C) to the µf(y), the local orientation at f(y) determined

by the chosen orientation of N . Consider now the commutative diagram

Hn(M |C)

��

Hn(B|C)oo

��

// Hn(f(B)|f(C)) //

��

Hn(N |f(C))

��
Hn(M |y) Hn(B|y)oo // Hn(f(B)|f(y)) // Hn(N |f(y))

Define µC ∈ Hn(B|C) to be the generator obtained from µf(C) ∈ Hn(N |f(C)) via the

isomorphisms in the top row (which is independent of y). Note that the generator ofHn(M |y)
we obtain from µf(y) ∈ Hn(N |f(y)) via the isomorphisms in the bottom row is precisely µy

(as indicated above, any sufficiently small ball around y can be used to define this generator).

Since the right vertical map takes µf(C) 7→ µf(y), these facts together with the commutativity

of the diagram imply that the left vertical map takes µC 7→ µy. This proves that the local

consistency condition holds, and hence the local orientations on M obtained from those on

N fit together to give an orientation.

2. We have seen in class that every manifold M has an orientable double cover, namely p̃ :

M̃ →M with M̃ = {(x, µx) | µx generates Hn(M |x)}. Hence what we have to show is that

if M is non-orientable, then this is unique up to isomorphism.

So let p : M → M be another orientable double cover. Note first that M is connected,

because if it were disconnected, it would have two components each of which would be

homeomorphic to M . But then an orientation of M would yield an orientation of M ,

contradicting the non-orientability of the latter.

Fix now an orientation on M̃ , given by a choice of local orientation µx ∈ Hn(M |x) at

every x ∈ M . We now define a map ϕ : M → M̃ as follows: Given x ∈ M , denote by

p∗µx ∈ Hn(M |x) the local orientation at x = p(x) induced by µx (using a small ball around

x on which p restricts to a homeomorphism). Then define

ϕ : M → M̃, x 7→ (p(x), p∗µx).
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ϕ clearly a local homeomorphism, in particular a continuous map. Moreover, it satisfies

p̃ ◦ ϕ = p, and hence p∗π1(M) ⊂ p̃∗π1(M̃). Since both are index 2 subgroups of π1(M),

it follows that p∗π1(M) = p̃∗π1(M̃). But we know from the theory of covering spaces that

this group determines a connected cover uniquely up to isomorphism, so M and M̃ are

isomorphic.

3. We claim that for any ball B ⊂M the map f : M →M/(M ∖B) ≈ Sn given by collapsing

all of M ∖ B to a point has degree ±1. To see this, take a point x ∈ B and consider the

commutative diagram

Hn(M)

��

// Hn(S
n)

��
Hn(M |x) // Hn(S

n|f(x))

Hn(B|x)

OO

// Hn(f(B)|f(x))

OO

Here the vertical maps on the left are induced by the inclusions M → (M,M ∖ x) resp.

(B,B ∖ x) → (M,M ∖ x), and similarly for ones on the right; the horizontal maps are

induced by f . Note that the vertical maps are isomorphisms (the upper ones by orientability,

the lower ones by excision), and so is the lower horizontal map because f : (B,B ∖ x) →
(f(B), f(B)∖ f(x)) is a homeomorphism. It follows from the commutativity of the diagram

that also the upper horizontal map is an isomorphism, which is equivalent to saying that the

degree of f is ±1.

4. Choose some x ∈ B and denote by xi ∈ Bi its preimage under f |Bi . Consider the commu-

tative diagram

Hn(M) //

��

Hn(M |x1, . . . , xn)
∼= //

��

⊕
i Hn(Bi|xi)

��
Hn(N)

∼= // Hn(N |x)
∼= // Hn(B|x)

in which the vertical maps are induced by f , the left horizontal ones by inclusion, and where

the right horizontal isomorphisms come from excision of M \ (B1 ∪ · · · ∪ Bn) resp. N \ B.

Denote by µxi
∈ Hn(Bi|xi) resp. µx ∈ Hn(B|x) generators corresponding to the fundamental

classes [M ] and [N ]. Then [M ] gets mapped to (µx1 , . . . , µxk
) ∈

⊕
i Hn(Bi|xi) under the

composition of the top horizontal maps which in turn gets mapped to
∑

i εiµx ∈ Hn(B|x)
by the right vertical map (by our assumption on the f |Bi

: Bi → B). On the other hand,

the left vertical map takes [M ] to deg(f)[N ], which then is mapped to deg(f)µx ∈ Hn(B|x)
by the composition of the bottom horizontal maps. Commutativity of the diagram yields

deg(f) =
∑

i εi.

5. Let x ∈ N and let B ∋ x be a ball such that f−1(B) is a disjoint union of balls B1, . . . , Bp

which f maps homeomorphically onto B and denote by xi ∈ Bi the preimages of x. In view

of Problem 4, we only have to show that the local contributions to the degree corresponding

to each Bi are the same. Suppose that an orientation of N has been fixed, which yields a local

orientation µx at x. As we have seen in Problem 1, the local orientations µxi
, i = 1, . . . , p,

obtained from µx via the identifications f∗ : Hn(Bi|xi)→ Hn(B|x) come from an orientation

of M , namely the one obtained by similarly pulling back local orientations from N at all

points of M (we have shown there that these local orientations fit together to an orientation).
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Turning this statement upside down, we see that this orientation induces local orientations

at x1, . . . , xp which all get mapped to the same local orientation at x, so all contribute with

the same sign.

6. [See p.152 of Hatcher’s book]

Note that all columns and the first two rows of the diagram are exact. Using this information,

it is easy to see that the third row is a chain complex (i.e. the two maps compose to zero).

Moreover, the diagram is a SES of the chain complexes given by the rows. The corresponding

LES in homology allows to conclude that the third row is exact (which is equivalent to saying

it has vanishing homology) because that’s true for the first two rows. Since the horizontal

maps are clearly chain maps, we therefore have a SES of chain complexes

0→ S∗(Q ∩R,S ∩ T )→ S∗(Q,S)⊕ S∗(R, T )→ S∗(Q+R,S + T )→ 0 (1)

We will show that the homology of the last term is isomorphic to Hn(X,Y ). Taking this

into account, the LES corresponding to the SES of chain complexes (??) is as desired.

Consider the third column in the commutative diagram for which there is an obvious map

of SES as follows:

0 // S∗(S + T ) //

��

S∗(Q+R) //

��

S∗(Q+R,S + T ) //

��

0

0 // S∗(Y ) // S∗(X) // S∗(X,Y ) // 0

Consider now the resulting commutative diagram in homology and recall from class that the

first two vertical maps induce isomorphisms in homology. Using the 5-lemma, we deduce

that also S∗(Q+R,S + T )→ S∗(X,Y ) induces an isomorphism in homology.

7. (a) Consider a triple (X,A,B) with B ⊂ A ⊂ X. The short exact sequence

0→ S(A,B)→ S(X,B)→ S(X,A)→ 0

induces the long exact sequence

· · · → Hi+1(X,A)→ Hi(A,B)→ Hi(X,B)→ Hi(X,A)→ · · ·

Applied to the triple (M,U ∪ V, V ) we get an exact sequence

· · · → Hi+1(M,U ∪ V )→ Hi(U ∪ V, V )→ Hi(M,V )→ Hi(M,U ∪ V )→ · · ·

(b) For i > n, Hi+1(M,U ∪V ) = Hi+1(M |M\(U ∪V )) = 0 by the lemma from lecture 12B

and because M\(U ∪V ) = 0 is compact. For the same reason, Hi(M,V ) = Hi(M |U) =

0. From the LES we deduce Hi(U) ∼= Hi(U ∪ V, V ) = 0. In particular, [z] = 0 ∈ Hi(U)

and so z = ∂w for some chain w ⊂ U ⊂M . It follows that also [z] = 0 ∈ Hi(M).

(c) Since M is connected, s is uniquely determined by its value at some point x0 ∈M . So

s ≡ 0 if and only if s(x0) = 0. Since image(z) is compact and M is not, there exists

x0 ∈M\image(z). We have s(x0) = LM,x0([z]) = 0 and thus s ≡ 0.

(d) By the lemma, there is a unique α ∈ Hn(M |U) with Lx(α) = s(x). But both, 0 ∈
Hn(M |U) and LM,U (a) solve the equation. Hence LM,U (a) = 0, which means that

[z] = 0 ∈ Hn(M |U) = Hn(M,V ).
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(e) The LES in degree n reads

0 = Hn+1(M,U ∪ V )→ Hn(U ∪ V, V )
j−→ Hn(M,V )→ · · ·

[z] viewed as a class in Hn(U) ∼= Hn(U ∪ V, V ) is sent to [z] = 0 ∈ Hn(M,V ) via j. j

is injective by exactness of the sequence and hence [z] = 0 ∈ Hn(U). Write z = ∂w for

some w ∈ Sn+1(U) to conclude [z] = 0 ∈ Hn(M).

8. Given a closed manifold M , we set M ′ := M \pt. Using the Mayer-Vietoris sequence for the

cover of M given by M ′ and a ball, one sees that Hi(M
′) = Hi(M) for i < n − 1. We also

know that Hn(M
′) = 0 as M ′ is non-compact, and hence the top end of the MV sequence is

0→ Hn(M)→ Hn−1(S
n−1)→ Hn−1(M

′)→ Hn−1(M)→ 0 (2)

Since M is orientable (⇔ Hn(M) ∼= Z), the first map is an isomorphism so that we get

Hn−1(M
′) = Hn−1(M).

To compute H∗(M1#M2), consider the cover of M1#M2 given by two sets A1 ≈M ′
1, A2 ≈

M ′
2 with A1 ∩ A2 ≃ Sn−1. From the resulting Mayer-Vietoris sequence we see immediately

that Hi(M1#M2) ∼= Hi(M
′
1)⊕Hi(M

′
2)
∼= Hi(M1)⊕Hi(M2) for 0 < i < n− 1. The top end

of the MV sequence looks as follows:

0→ Hn(M1#M2)→ Hn−1(S
n−1)

ϕ−→ Hn−1(M
′
1)⊕Hn−1(M

′
2)→ Hn−1(M1#M2)→ 0 (3)

Writing ϕ = (ϕ1, ϕ2), note that the maps ϕi : Hn−1(S
n−1)→ Hn−1(M

′
i) are precisely those

also appearing in (??) with M = Mi. So since both M1 and M2 are orientable, ϕ vanishes

and we obtainHn−1(M1#M2) ∼= Hn−1(M1)⊕Hn−1(M2); we also see thatHn(M1#M2) ∼= Z,
so M1#M2 is orientable.

9. Poincaré duality tells us that Hn−1(M) ∼= Hn+1(M), and Hn+1(M) ∼= Hom(Hn+1,Z) ⊕
Ext(Hn(M), Z) by the universal coefficient theorem. Recall that Ext(G,Z) is isomorphic to

the torsion subgroup of G for any finitely generated Abelian group G (which the Hi(M) are

as M is a compact manifold). So if Hn(M) has torsion, then also Hn+1(M) and Hn−1(M)

have torsion.

10. Consider the maps p : (S2×S8)#(S4×S6)→ S2×S8 and q : (S2×S8)#(S4×S6)→ S4×S6

given by collapsing one of the two summands. It follows from the result of problem 1 that

p∗ ⊕ q∗ : Hi(S2 × S8)⊕Hi(S4 × S6)→ Hi(S2 × S8#S4 × S6) is an isomorphism in degrees

0 < i < 10 (check that our p∗⊕q∗ is just the dual of the isomorphism Hi(S
2×S8#S4×S6) ∼=

Hi(S
4 × S6) ⊕ Hi(S

2#S8) from problem 1!). The fact that this is a ring homomorphism

shows that the only non-trivial cup products are those between elements of complementary

degrees, i.e. those forced by Poincaré duality.

11. Recall from class that every odd-dimensional manifold has vanishing Euler characteristic, so

0 = χ(M) = b0− b1 + b2− b3. We have b0 = 1, and b3 = 0 since M is non-orientable. Hence

b1 > 0 and thus H1(M) is infinite.

12. Denoting by α ∈ H2(CPn) a generator, αn generates H2n(CPn) and we have αn ⌢ [CPn] =

1 for one choice of fundamental class [CPn] ∈ H2n(CPn). Take k ∈ Z such that f∗(α) = kα.

Then f∗(αn) = (f∗(α))n = knαn and hence αn ⌢ f∗([CPn]) = f∗(αn) ⌢ [CPn] = knαn ⌢

[CPn] = kn. It follows that f∗([CPn]) = kn[CPn], i.e. f has degree kn.
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13. The map Hn(Sn)⊕Hn(Sn) ∼= Hn(Sn × Sn), (kα, ℓα) 7→ k(α × 1) + ℓ(1× α) = ku+ ℓv, is

an isomorphism by Künneth. Being a product of orientable manifolds, Sn×Sn is orientable

and thus the cup product pairing is non-singular, which implies that there exists some

u′ ∈ Hn(Sn × Sn) such that u ⌣ u′ generates H2n(Sn × Sn). Since u ⌣ u = (p∗0α ⌣

p∗11) ⌣ (p∗0α ⌣ p∗11) = p∗0(α ⌣ α) ⌣ p∗1(1 ⌣ 1) = 0 as α ⌣ α = 0 (where pi : S
n×Sn → Sn

denote the projections to the factors), we can choose u′ = v.

So u ⌣ v generates H2n(Sn × Sn), and thus by Poincaré duality we know that (u ⌣ v) ⌢

[Sn×Sn] = ±1, where [Sn×Sn] is a fundamental class. It follows that f∗(u ⌣ v) = ±u ⌣ v,

using that f∗(u ⌣ v) ⌢ [Sn × Sn] = (u ⌣ v) ⌢ f∗[S
n × Sn] = ±1 by the assumption that

deg f = ±1. Note that u ⌣ v = v ⌣ u a n is even; using that and u ⌣ u = 0 = v ⌣ v, we

obtain

f∗(u ⌣ v) = f∗(u) ⌣ f∗(v) = (au+ bv) ⌣ (cu+ dv) = (ad+ bc)u ⌣ v,

f∗(u ⌣ u) = (au+ bv) ⌣ (au+ bv) = 2ab(u ⌣ v) = 0,

f∗(v ⌣ v) = (cu+ dv) ⌣ (cu+ dv) = 2cd(u ⌣ v) = 0.

So ad+ bc = ±1 and ab = 0 = cd, which is equivalent to what we need to prove.

14. Let [Sn] ∈ Hn(S
n;Q) and [M ] ∈ Hn(M ;Q) be fundamental classes. Writing k = deg f ,

we have f∗[S
n] = k[M ] . Fix now 0 < i < n and let σ ∈ Hi(M ;Q) be any class with

Poincaré dual α ∈ Hn−i(M ;Q), i.e. σ = α ⌢ [M ]. Then kσ = kα ⌢ [M ] = α ⌢

f∗[S
n] = f∗α ⌢ [Sn] = 0 because f∗α ∈ Hn−i(Sn) vanishes for degree reasons. Since

we are working over Q, it follows that σ = 0. So Hi(M ;Q) = 0 for 0 < i < n and we

conclude H∗(M ;Q) ∼= H∗(S
n;Q) (in degrees 0 and n this is clear as M is closed connected

orientable). If we replace Q by Z, the same argument shows that every σ ∈ Hk(M) is k-

torsion; in particular, if we assume k = ±1 we obtain Hi(M) = 0 for 0 < i < n and thus

H∗(M) ∼= H∗(S
n).

15. Suppose that Hi(M) ̸= 0 for some 0 < i < n. If Hi(M) contains a non-torsion element

σ, consider its Poincaré dual α ∈ Hn−i(M); by the non-singularity of the cup product

pairing there exists some β ∈ Hi(M) such that α ⌣ β generates Hn(M). Otherwise there

is a non-zero σ that is p-torsion for some prime p and the universal coefficient theorem for

homology implies that there exists a non-zero element σ′ ∈ Hi(M ;Zp) with Poincaré dual

α′ ∈ Hn−i(M ;Zp); by the non-singularity of the cup product pairing (now over the field Zp)

there exists some β′ ∈ Hi(M ;Zp) such that α′ ⌣ β′ generates Hn(M ;Zp) ∼= Zp.

On the other hand, the assumption that M = U ∪ V with acyclic U, V implies that all cup

products of classes of positive degree in H∗(M) resp. H∗(M ;Zp) vanish.

This contradiction shows that Hi(M) = 0 for 0 < i < n and hence H∗(M) ∼= H∗(S
n).
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