D-MATH Prof. Dr. Emmanuel Kowalski Number Theory II

Exercise Sheet 1

1. Let

$$\mathbf{D} = \{ z \in \mathbf{C} \mid |z| < 1 \}$$

be the unit disc in \mathbf{C} .

Prove that the maps

 $f: \mathbf{H} \to \mathbf{D}, \qquad g: \mathbf{D} \to \mathbf{H}$

defined by

$$f(z) = \frac{z-i}{z+i},$$
 $g(w) = i\frac{w+1}{1-w}$

are indeed well-defined and are reciprocal conformal equivalences (i.e., they are reciprocal bijective holomorphic maps).

2. a) Let K be a field. Show that the subgroup G of $SL_2(K)$ generated by the matrices of the form

$$u(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \qquad v(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix},$$

for $x \in K$ contains the matrices

$$\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$$

for $a \in K^{\times}$. (Hint: consider a product u(b)v(c)u(d)v(e) and specialize b, c, d and e.)

- b) Deduce that $G = SL_2(K)$. (Hint: use linear algebra to reduce to the previous question.)
- c) Let p be a prime number. Show that $SL_2(\mathbf{F}_p)$ is generated by

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

- d) Show that for any prime number p, the map $SL_2(\mathbf{Z}) \to SL_2(\mathbf{F}_p)$ defined by reduction modulo p is a surjective homomorphism.
- e) For any positive integer $q \ge 1$, prove that the subgroups

$$\Gamma_0(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid c \equiv 0 \mod q \right\},$$

$$\Gamma_1(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid c \equiv 0 \mod q, \ a, d \equiv 1 \mod q \right\},$$

$$\Gamma(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod q \right\},$$

have finite index in $SL_2(\mathbf{Z})$. Compute this index when q is a prime number. (Hint: compute the size of $SL_2(\mathbf{F}_p)$.)

- **3.** Let G be a group and let X be a set of which G acts on the left, where the action of $g \in G$ on $x \in X$ is denoted $g \cdot x$. We denote by $\mathcal{C}(X)$ the space of all functions $f: X \to \mathbb{C}$.
 - a) Show that G acts on the right on $\mathcal{C}(X)$ by

$$(f \cdot g)(x) = f(g \cdot x)$$

for $f \in \mathcal{C}(X)$, $g \in G$ and $x \in X$.

b) Let $\alpha \colon G \times X \to \mathbf{C}^{\times}$ be a function. Show that defining

$$(f \bullet g)(x) = \alpha(g, x)f(g \cdot x)$$

(for $f \in \mathcal{C}(X)$, $g \in G$ and $x \in X$) defines an action of G on $\mathcal{C}(X)$ if and only if

$$\alpha(gh, x) = \alpha(h, x)\alpha(g, h \cdot x) \tag{1}$$

for all $(g,h) \in G^2$ and $x \in X$.

c) Let $\gamma \colon X \to \mathbf{C}^{\times}$ be any function. Show that

$$\alpha(g, x) = \frac{\gamma(g \cdot x)}{\gamma(x)}$$

defines a function with the property of Question b).

4. Let G be a group acting transitively on a non-empty set X. Let $\alpha: G \times X \to \mathbf{C}^{\times}$ be a function satisfying the relation (1) of the previous exercise. We denote again by • the corresponding action of G on $\mathcal{C}(X)$. We also denote by $\mathcal{C}(G)$ the space of functions on G.

Let *H* be a subgroup of *G*. We denote by V_H the space of $f \in \mathcal{C}(X)$ such that $f \bullet h = f$ for all $h \in H$.

a) Let $x_0 \in X$ be fixed. Let λ be the linear map

$$\lambda: V_H \to \mathcal{C}(G)$$

defined by

$$\lambda(f)(g) = f(g \cdot x_0)\alpha(g, x_0).$$

Show that λ is injective.

b) Show that for all $f \in V_H$, the function $\tilde{f} = \lambda(f)$ satisfies

$$f(hg) = f(g) \tag{2}$$

for all $h \in H$ and $g \in G$.

- c) Let K be the stabilizer of x_0 in G. Show that the map $\chi \colon K \to \mathbf{C}^{\times}$ defined by $\chi(k) = \alpha(k, x_0)$ is a group homomorphism.
- d) Show that for all $f \in V_H$, the function $\tilde{f} = \lambda(f)$ also satisfies

$$\widetilde{f}(gk) = \chi(k)\widetilde{f}(g) \tag{3}$$

for all $k \in K$ and $g \in G$.

- e) Show that the image of λ is the set of functions $\tilde{f}: G \to \mathbb{C}$ such that (2) and (3) are valid for all $g \in G$, $h \in H$ and $k \in K$. (Hint: given a function \tilde{f} which satisfies those conditions, define explicitly a function f so that $\lambda(f) = \tilde{f}$.)
- 5. Let $G = SL_2(\mathbf{R}), X = \mathbf{H}$ and consider the action of G on X by Möbius transformations.
 - a) Show that for any integer $k \in \mathbb{Z}$, we can define

$$\alpha \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \right) = (cz+d)^k$$

to have an example of the situation of the two previous exercises. In what way is this related to modular forms?

b) Show that if $k \neq 0$, this function α is not of the form given by Question c) of Exercise 3.

Due date: 04.03.2025