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Solutions: Exercise Sheet 1

1. Let
D = {z ∈ C | |z| < 1}

be the unit disc in C.

Prove that the maps
f : H → D, g : D → H

defined by

f(z) =
z − i

z + i
, g(w) = i

w + 1

1− w

are indeed well-defined and are reciprocal conformal equivalences (i.e., they are reci-
procal bijective holomorphic maps).

Solution:

First we will show that the maps are well-defined. Let z ∈ H be arbitrary and write
z = x+ yi with x, y ∈ R. Calculate

f(z) =
x+ i(y − 1)

x+ i(y + 1)
=

x2 + y2 − 1

x2 + (y + 1)2
+ i

x(y − 1)− x(y + 1)

x2 + (y + 1)2

=
x2 + y2 − 1

x2 + (y + 1)2
− i

2x

x2 + (y + 1)2
.

Since y > 0, we have that 2(y + 1) > 2 and (y + 1)2 + y2 − 1 > 0, so that

(x2 + (y + 1)2 − (x2 + y2 − 1)) · (x2 + (y + 1)2 + (x2 + y2 − 1)) > 4x2.

This is equivalent to

(x2 + (y + 1)2)2 > (x2 + y2 − 1)2 + 4x2,

from which we obtain

|f(z)| = (x2 + y2 − 1)2 + 4x2

(x2 + (y + 1)2)2
< 1,

and f(z) ∈ D.

Let ω = x+ yi ∈ D, with x, y ∈ R, be arbitrary. Then

g(ω) =
(x+ 1)i− y

(1− x)− yi

=
(1− x2)− y2

(1− x)2 + y2
i+R,



for some R ∈ R. We need to show that (1−x2)−y2

(1−x)2+y2
> 0. This is true if and only if

1− x2 − y2 > 0, which follows for all x+ yi ∈ D, as x2 + y2 < 1.

Next, we will show that the maps are bijections. Let z ∈ H and ω ∈ D be arbitrary.
Then

g ◦ f(z) = g

(
z − i

z + i

)
= i

z−i+z+i
z+i

z+i−(z−i)
z+i

= i
2z

2i
= z.

and

f ◦ g(ω) = f

(
ωi+ i

1− ω

)
=

ωi+i−i+ωi
1−ω

ωi+i+i−ωi
1−ω

=
2ωi

2i
= ω.

Hence f and g are reciprocal bijections. Moreover, since z + i is never zero on the
upper-half plane H, we have that the derivative f ′(z) exists for all z ∈ H and f is
holomorphic.

2. a) Let K be a field. Show that the subgroup G of SL2(K) generated by the matrices
of the form

u(x) =

(
1 x
0 1

)
, v(x) =

(
1 0
x 1

)
,

for x ∈ K contains the matrices (
a 0
0 a−1

)
for a ∈ K×. (Hint: consider a product u(b)v(c)u(d)v(e) and specialize b, c, d and e.)
Solution:
Let a ∈ K× be arbitrary. Then

u(−a)v(a−1 − 1)u(1)v(−1 + a) =

(
1 −a

1

)(
1

a−1 − 1 1

)(
1 1

1

)(
1

a− 1 1

)
=

(
a −a

a−1 − 1 1

)(
a 1

a− 1 1

)
=

(
a

a−1

)
.

b) Deduce that G = SL2(K). (Hint: use linear algebra to reduce to the previous
question.)
Solution:
Clearly G is a subgroup of SL2(K), so we only have to show the other inclusion.

Let
(
a b
c d

)
∈ SL2(K). We will have a couple of cases.

First, assume that c = 0. Then ad = 1, so that d = a−1 (and especially a ̸= 0),
and we can write (

a b
d

)
=

(
a

a−1

)(
1 b

a
1

)
∈ G. (1)



From now on we can assume that c ̸= 0. If b = 0, we can similarly write(
a
c d

)
=

(
a

a−1

)(
1
ac 1

)
∈ G. (2)

Assume b ̸= 0 and c ̸= 0. Note that(
1 1

1

)(
−1
1 −1

)(
1 1

1

)
=

(
−1

1

)
∈ G.

If a = 0, we have c = b−1. Note that(
b

−b−1 d

)
=

(
b
d b−1

)(
−1

1

)
,

which is contained in G by part (2). Finally, if a ̸= 0 as well, we have(
a b

d

)(
a−1 −b

a

)
=

(
1

ca−1 1

)
,

which is in G by part (1). Hence SL2(K) is contained in G and we are done.

c) Let p be a prime number. Show that SL2(Fp) is generated by(
1 1
0 1

)
,

(
1 0
1 1

)
.

Solution:
By part b) we have that SL2(Fp) is generated by matrices of the form(

1 x
0 1

)
,

(
1 0
y 1

)
,

for x, y ∈ Fp. Let r′ ∈ Fp be arbitrary. We can write r′ = r + pZ, for r ∈
0, 1, . . . , p− 1. Then we have in SL2(Fp)(

1 r′

1

)
=

(
1 1

1

)r

,

and similarly (
1
r′ 1

)
=

(
1
1 1

)r

.

Thus the two matrices
(
1
1 1

)
and

(
1 1

1

)
generate SL2(Fp).

d) Show that for any prime number p, the map SL2(Z) → SL2(Fp) defined by reduc-
tion modulo p is a surjective homomorphism.
Solution:



Let A =

(
a b

c d

)
∈ SL2(Fp) be arbitrary. There exists r1 ∈ Z such that r1a+c = c1

is a unit in Fp. Then (
1
1 1

)r1 (a b

c d

)
=

(
a b

c1 d1

)
,

for some d1 ∈ Fp. There also exists r2 ∈ Z such that(
1 1

1

)r2 (1
1 1

)r1 (a b

c d

)
=

(
1 b2
c1 d1

)
,

for b2 ∈ Fp. Let c1, b2 ∈ Z such that c1 ≡ c1 (mod p) and b2 ≡ b2 (mod p). Then(
1 1

1

)−b2 (1
1 1

)−c1 ( 1 b2
c1 d1

)
=

(
1

1

)
,

so that the matrix (
1
1 1

)−r1 (1 1
1

)−r2 (1 1
1

)c1 (1
1 1

)b2

gets mapped reduction modulo p to the matrix A.

Alternative solution: Since SL2(Fp) is generated by the matrices
(
1
1 1

)
and(

1 1
1

)
from part c), and since these are in the image of the reduction map,

the latter must be surjective.
e) For any positive integer q ≥ 1, prove that the subgroups

Γ0(q) =
{(a b

c d

)
∈ SL2(Z) | c ≡ 0 mod q

}
,

Γ1(q) =
{(a b

c d

)
∈ SL2(Z) | c ≡ 0 mod q, a, d ≡ 1 mod q

}
,

Γ(q) =
{(a b

c d

)
∈ SL2(Z) |

(
a b
c d

)
≡

(
1 0
0 1

)
mod q

}
,

have finite index in SL2(Z). Compute this index when q is a prime number. (Hint:
compute the size of SL2(Fp).)
Solution:
First, let q = p be a prime number. We will denote πp : SL2(Z) → SL2(Fp)
the reduction modulo p map from the previous exercise. Then the group Γ(p) is
precisely the kernel of πp. Since SL2(Z)/Γ(p) → SL2(Fp) is injective and SL2(Fp) is
finite, we have that the index [SL2(Z) : Γ(p)] is finite. Since we have the inclusions

Γ(p) ⊆ Γ1(p) ⊆ Γ0(p) ⊆ SL2(Z),

we have that the subgroups Γ1(p) and Γ0(p) have finite index in SL2(Z) as well.



Next we will compute the index of these subgroups. From the isomorphism above
we have that [SL2(Fp) : Γ(q)] = |SL2(Fp)|. Recall that the group SL2(Fp) is the
kernel of the determinant homomorphism GL2(Fp) → F×

q . The first column of
the matrix can be any nonzero vector in F2

p, which leaves us with p2 − 1 choices
(all vectors except the zero vector). Then the second column must be linearly
independent from the first, which excludes all scalar multiples of the first column.
Hence we exclude p different vectors, and are left with p2 − p possible choices, so
that

|GL2(Fp)| = (p2 − 1)(p2 − p).

Hence

[SL2(Z) : Γ(p)] = |SL2(Fp)| =
|GL2(Fp)|

|F×
p |

=
(p2 − 1)(p2 − p)

p− 1
= p(p2 − 1).

Next we will compute the index [Γ1(p) : Γ(p)]. Consider the surjective homomor-

phism ϱ1 : Γ1(p) → Fp given by
(
a b
c d

)
7→ b. Note that ϱ1 is a homomorphism

since

ϱ1

((
a b
c d

)(
a′ b′

c′ d′

))
= ϱ1

((
aa′ + bc′ bd′ + ab′

ca′ + dc′ dd′ + cb′

))
= ab′ + bd′

= b+ b′ + (a− 1)b′ + (d− 1)b ≡ b+ b′ (mod p)

Since ker(ϱ1) = Γ(p), we obtain that [Γ1(p) : Γ(p)] = p. Hence

[SL2(Z) : Γ1(p)] =
[SL2(Z) : Γ(p)]

[Γ1(p) : Γ(p)]
= p2 − 1.

Finally we can turn to the group Γ0(p). Consider the surjective homomorphism

ϱ0 : Γ0(p) → F×
p given by

(
a b
c d

)
7→ d. Note that ϱ0 is a homomorphism since

ϱ0

((
a b
c d

)(
a′ b′

c′ d′

))
= ϱ0

((
aa′ + bc′ bd′ + ab′

ca′ + dc′ dd′ + cb′

))
= dd′ + cb′ ≡ dd′ (mod p)

Since ker(ϱ0) = Γ1(p), we obtain that [Γ0(p) : Γ1(p)] = p− 1. Hence

[SL2(Z) : Γ0(p)] =
[SL2(Z) : Γ1(p)]

[Γ0(p) : Γ1(p)]
= p+ 1.

For general integers q this is solved similarly. We can write q =
∏

i p
ni
i , where pi

are distinct prime numbers and ni ∈ N. Then there exists a homomorphism

ϕq : SL2(Z) →
∏
i

SL2(Z/p
ni
i Z),



from the reduction mod pni
i , for all i. By the Chinese remainder theorem, for a

positive integer a we have that a (mod q) is isomorphic to a (mod pni
i ) for all i.

Hence

Γ(q) =

{(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡

(
1

1

)
(mod pni

i ),∀i
}
.

Then Γ(q) is the kernel of the homomorphism ϕq and the quotient SL2(Z)/Γ(q)
is isomorphic to a subgroup of

∏
i SL2(Z/p

ni
i Z), so it is finite. Again from the

inclusions Γ(q) ⊆ Γ1(q) ⊆ Γ0(q) we obtain that the other subgroups have finite
index as well.

3. Let G be a group and let X be a set of which G acts on the left, where the action
of g ∈ G on x ∈ X is denoted g · x. We denote by C(X) the space of all functions
f : X → C.

a) Show that G acts on the right on C(X) by

(f · g)(x) = f(g · x)

for f ∈ C(X), g ∈ G and x ∈ X.
Solution:
Let f ∈ C(X) be arbitrary. Then for every x ∈ X and the identity element e ∈ G
we have

(f · e)(x) = f(e · x) = f(x).

Let h ∈ G be arbitrary as well. Then

(f · (gh))(x) = ((f · g) · h)(x)
= (f · g)(h · x)
= f(g · (h · x)) = f((gh) · x).

b) Let α : G×X → C× be a function. Show that defining

(f • g)(x) = α(g, x)f(g · x)

(for f ∈ C(X), g ∈ G and x ∈ X) defines an action of G on C(X) if and only if

α(gh, x) = α(h, x)α(g, h · x) (3)

for all (g, h) ∈ G2 and x ∈ X.
Solution:
Let x ∈ X be arbitrary. Let e ∈ G be the identity element and g, h ∈ G arbitrary.
Then

(f • e)(x) = α(e, x)f(x) = f(x) ⇐⇒ 1 = α(e, x)

⇐⇒ α(e, x) = α(e, x)α(e, x)

⇐⇒ α(e2, x) = α(e, x)α(e, e · x),



so (e, x) satisfies equation (3). We further have

α(gh, x)f((gh) · x) = (f • (gh))(x)
= ((f • g) • h)(x)
= α(h, x)(f • g)(h · x)
= α(h, x)α(g, h · x)f((gh) · x),

which holds if and only if α(gh, x) = α(h, x)α(g, h · x).
c) Let γ : X → C× be any function. Show that

α(g, x) =
γ(g · x)
γ(x)

defines a function with the property of Question b).
Solution:
Let g, h ∈ G and x ∈ X be arbitrary. Then

α(gh, x) =
γ((gh) · x)

γ(x)
=

γ(h · x)
γ(x)

· γ(g · (h · x))
γ(h · x)

= α(h, x)α(g, h · x),

so equation (3) is satisfied and by part b) we are done.

4. Let G be a group acting transitively on a non-empty set X. Let α : G ×X → C× be
a function satisfying the relation (3) of the previous exercise. We denote again by •
the corresponding action of G on C(X). We also denote by C(G) the space of functions
on G.

Let H be a subgroup of G. We denote by VH the space of f ∈ C(X) such that f •h = f
for all h ∈ H.

a) Let x0 ∈ X be fixed. Let λ be the linear map

λ : VH → C(G)

defined by
λ(f)(g) = f(g · x0)α(g, x0).

Show that λ is injective.
Solution:
We have that f ∈ C(X) is contained in the kernel of λ if and only if λ(f) maps
all elements of G to 1, i.e. λ(f)(g) = 1 for all g ∈ G. In other words, this means
that f(g · x0)α(g, x0) = 1 for all g ∈ G. But then f(x0)α(e, x0) = 1, for e ∈ G
the identity element, and since α(e, x0) = 1 (by Question b)) we have f(x0) = 1.
Since this holds for any x0 ∈ X, it holds for all elements in X, and f is the trivial
morphism. Hence the kernel of λ is just the identity and the map above is injective.



b) Show that for all f ∈ VH , the function f̃ = λ(f) satisfies

f̃(hg) = f̃(g) (4)

for all h ∈ H and g ∈ G.
Solution:
Let f ∈ VH , g ∈ G and h ∈ H be arbitrary. Then

f̃(hg) = λ(f)(hg)

= f((hg) · x0)α(hg, x0)
= f(h · (g · x0))α(g, x0)α(h, g · x0)
= (f • h)(g · x0)α(g, x0)
= f(g · x0)α(g, x0)
= λ(f)(g) = f̃(g).

c) Let K be the stabilizer of x0 in G. Show that the map χ : K → C× defined by
χ(k) = α(k, x0) is a group homomorphism.
Solution:
Let e ∈ G be the identity, and g, h ∈ K arbitrary. By Question b) we have

χ(e) = α(e, x0) = 1.

We further have

χ(gh) = α(gh, x0) = α(h, x0)α(g, h · x0) = α(h, x0)α(g, x0) = χ(g)χ(h),

so that χ is a group homomorphism.

d) Show that for all f ∈ VH , the function f̃ = λ(f) also satisfies

f̃(gk) = χ(k)f̃(g) (5)

for all k ∈ K and g ∈ G.
Solution:
Let f ∈ VH , k ∈ K and g ∈ G be arbitrary. Then

f̃(gk) = λ(f)(gh)

= f((gk) · x0)α(gk, x0)
= f(g · x0)α(k, x0)α(g, k · x0)
= α(k, x0) · f(g · x0)α(g, x0)
= χ(k)f̃(g).



e) Show that the image of λ is the set of functions f̃ : G → C such that (4) and (5)
are valid for all g ∈ G, h ∈ H and k ∈ K. (Hint: given a function f̃ which satisfies
those conditions, define explicitly a function f so that λ(f) = f̃ .)
Solution:
Let f̃ be a function which satisfies those conditions. For g ∈ G, x ∈ X we define

f(g · x) := f̃(g)

α(g, x)
.

We will show that λ(f) = f̃ . First, we need to show that f is well-defined. Let
h ∈ H be arbitrary. Then

(f • h)(x) = α(h, x)f(h · x)
= α(h, x)f̃(h)α(h, x)−1

= f̃(h) = f̃(h · e)
= f̃(e) = f(x),

so that f ∈ VH . Hence we are left to show that λ(f) = f̃ . This is the case if and
only if for all g ∈ G we have

λ(f)(g) = f̃(g),

which holds since

f(g · x0)α(g, x0) =
f̃(g)

α(g, x0)
α(g, x0) = f̃(g).

5. Let G = SL2(R), X = H and consider the action of G on X by Möbius transformations.

a) Show that for any integer k ∈ Z, we can define

α
((a b

c d

)
, z
)
= (cz + d)k

to have an example of the situation of the two previous exercises. In what way is
this related to modular forms?
Solution:
Recall that the action of G on X by Möbius transformations is given by(

a b
c d

)
· z =

az + b

cz + d

for z ∈ H.



Let k ∈ Z be arbitrary. Let g =

(
a1 b1
c1 d1

)
, h =

(
a2 b2
c2 d2

)
∈ SL2(R) be matrices.

Then

α(gh, x) = ((a2c1 + c2d1)z + b2c1 + d1d2)
k

= (c2z + d2)
k

(
(c1a2 + c2d1)z + c1b2 + d1d2

c2z + d2

)k

= (c2z + d2)
k

(
c1

(
a2z + b2
c2z + d2

+ d1

))k

= α(h, x)α(g, h · x).

Hence α satisfies equation (3). In the context of modular forms, the function α is
precisely the automorphy factor, and a weakly modular function of weight k and

level 1 is a meromorphic function f : H → C such that for all
(
a b
c d

)
∈ SL2(Z)

we have
f

(
az + b

cz + d

)
= (cz + d)kf(z),

for all z ∈ H.

b) Show that if k ̸= 0, this function α is not of the form given by Question c) of
Exercise 3.
Solution:
Let k > 0 be an integer. Assume that there is a function γ : X → C× such that

α(g, z) =
γ(g · z)
γ(z)

,

for all g ∈ SL2(R) and z ∈ H. Then for all g in the stabilizer StabSL2(R)(z) we
have that α(g, z) = γ(z)

γ(z) = 1, for some z ∈ H.

Consider 1
2

(
1 −1
1 1

)
∈ StabSL2(R)(i). Note that

1

2

(
1 −1
1 1

)
· i = i− 1

i+ 1
=

(i− 1)2

−2
= i.

Then we would have that

α

(
1

2

(
1 −1
1 1

)
, i

)
=

(
1 + i

2

)k

= 1,

which implies that (
1 + i√

2

)k

= e
2πi
8

k = 2
k
2 ,

which is never true for any k > 0.


