D-MATH Number Theory II 04.03.2025
Prof. Dr. Emmanuel Kowalski

Solutions: Exercise Sheet 1

1. Let
D={zeC | |z| <1}

be the unit disc in C.

Prove that the maps
f+H— D, g D—-H
defined by
Z—1 w+1
f(z) = Py g(w) = o
are indeed well-defined and are reciprocal conformal equivalences (i.e., they are reci-
procal bijective holomorphic maps).

Solution:

First we will show that the maps are well-defined. Let z € H be arbitrary and write
z = x + yi with x,y € R. Calculate

r4ily—1)  a?+y?—1 Hx(y—l)—x(yﬂ)
r+ily+1) 22+ (y+1)? 2+ (y+ 1)2
22+ —1 ) 2x

1 .
224+ (y+1)2 22+ (y+1)2

f(z) =

Since y > 0, we have that 2(y +1) > 2 and (y + 1)2 +y? — 1 > 0, so that
P+ (y+1)2 =@ +y* = 1) - @+ y+ 1)+ (@®+y* - 1)) > 42’
This is equivalent to
(@ + (y +1)%)° > (a® + 9% —1)° + 4a?,
from which we obtain

(22 +y% — 1)% + 422

= <1,
|f(Z)| (x2+(y+1)2)2
and f(z) e D
Let w =2+ yit € D, with z,y € R, be arbitrary. Then
B (3: + 1) —
1— 2
E z’) - 1+ R,

1—xz)2+ 2



2.

for some R € R. We need to show that 8:%;2);32 > 0. This is true if and only if

1 — 2% —y? > 0, which follows for all z + yi € D, as 22 +y% < 1.

Next, we will show that the maps are bijections. Let z € H and w € D be arbitrary.
Then

5 i z—i+2+1 25
_ - . z+1 _per
gof(z)=yg (z n z) = 17Z+i_(%_i) =iy =z
Z+1
and it
witi) _ SHEE gy
fog(w):f(l_w>:wi+1i+2)—wi:2Z’:

Hence f and g are reciprocal bijections. Moreover, since z + ¢ is never zero on the
upper-half plane H, we have that the derivative f’(z) exists for all 2 € H and f is
holomorphic.

a) Let K be a field. Show that the subgroup G of SLa(K) generated by the matrices

of the form
w=(5 7). w@=(; 7).

for x € K contains the matrices
a 0
0 at

for a € K*. (Hint: consider a product u(b)v(c)u(d)v(e) and specialize b, ¢, d and e.)
Solution:
Let a € K* be arbitrary. Then

w(—a)v(a™' — Du(l)v(—1+a) = (1 —1a> <a_11_ 1 1) <1 i) (ai1 1)

b) Deduce that G = SLo(K). (Hint: use linear algebra to reduce to the previous
question.)

Solution:
Clearly G is a subgroup of SLo(K), so we only have to show the other inclusion.

Let (CCL Z) € SLa(K). We will have a couple of cases.

First, assume that ¢ = 0. Then ad = 1, so that d = a~! (and especially a # 0),

and we can write )
a b a 1 2
()= ) 1)ee W



From now on we can assume that ¢ £ 0. If b = 0, we can similarly write

(¢ a)= () ) e

Assume b # 0 and ¢ # 0. Note that

CNE ) )-( Yo

If a = 0, we have ¢ = b~!. Note that

(o a) =) b))

which is contained in G by part (2). Finally, if a # 0 as well, we have

S LG N S

which is in G by part (1). Hence SLy(K) is contained in G and we are done.
Let p be a prime number. Show that SLy(F),) is generated by

b))

By part b) we have that SLa(F,) is generated by matrices of the form

L1 )

Solution:

for x,y € Fp. Let ' € F, be arbitrary. We can write ' = r + pZ, for r €

0,1,...,p— 1. Then we have in SLy(F,)
L\ 11
1) 1) 7’
1 1y
r 1) \1 1) °

D generate SLo(F)).

and similarly

Thus the two matrices <1 1) and <1

Show that for any prime number p, the map SLa(Z) — SLy(F)) defined by reduc-

tion modulo p is a surjective homomorphism.

Solution:



7
c d
is a unit in F),. Then

Let A = € SLy(F,) be arbitrary. There exists r; € Z such that ria+¢ = ¢

() Ea-Ga)

for some d; € F,. There also exists ro € Z such that

(D6 ED)-6a)

for by € F,. Let ¢1,by € Z such that ¢; = ¢; (mod p) and by = by (mod p). Then

() Gy Ga-C
G0 ) )6

gets mapped reduction modulo p to the matrix A.

ol QI

so that the matrix

Alternative solution: Since SLa(F),) is generated by the matrices <1 1) and

11 . . . .
( 1) from part c¢), and since these are in the image of the reduction map,

the latter must be surjective.

For any positive integer ¢ > 1, prove that the subgroups
a b
To(q) = {(c d) € SLo(Z) | ¢ = 0 mod q},

I'i(q) = {<Z 2) € SLy(Z) | ¢e=0mod ¢, a,d =1 mod q},

(¢ 1) <stam 1 (2 )= (3 Y mar).

have finite index in SLy(Z). Compute this index when ¢ is a prime number. (Hint:
compute the size of SLy(F)).)

Solution:

First, let ¢ = p be a prime number. We will denote m, : SLa(Z) — SLa(F))
the reduction modulo p map from the previous exercise. Then the group I'(p) is
precisely the kernel of m,. Since SL2(Z)/I'(p) — SL2(F,) is injective and SLy(F)) is
finite, we have that the index [SLa(Z) : I'(p)] is finite. Since we have the inclusions

I'(p) € T'u(p) € To(p) € SLa(2),

we have that the subgroups I'; (p) and I'g(p) have finite index in SLo(Z) as well.



Next we will compute the index of these subgroups. From the isomorphism above
we have that [SLao(F,) : I'(¢)] = |SL2(F)p)|. Recall that the group SLa(F)) is the
kernel of the determinant homomorphism GLz(F,) — F. The first column of
the matrix can be any nonzero vector in F}%, which leaves us with p? — 1 choices
(all vectors except the zero vector). Then the second column must be linearly
independent from the first, which excludes all scalar multiples of the first column.
Hence we exclude p different vectors, and are left with p?> — p possible choices, so
that

IGLy(Fp)| = (p* — 1)(p* — p).

Hence

2 _ 2 _
_ |GI|JP2‘;E>)<E|‘I?) — (p pl)_(pl p) :p(p2 _ 1)

[SL2(Z) : T'(p)] = [SLa(Fy)|

Next we will compute the index [I'1(p) : I'(p)]. Consider the surjective homomor-

phism o1 : I'1(p) — F), given by <Z Z — b. Note that g1 is a homomorphism
since
a b\ (ad UV B aa' +bc  bd + ab/
1 c d)\d d T\ \ed +dd dd + b
=ab +bd

=b+b +(a—1+(d-1)b=b+b (mod p)
Since ker(p1) = I'(p), we obtain that [I';(p) : I'(p)] = p. Hence

)
[SL2(Z) : T'(p)]
T'1(p) : T'(p)]

Finally we can turn to the group I'g(p). Consider the surjective homomorphism

00 : To(p) — FX given by @ b — d. Note that pg is a homomorphism since
p c d

a b\ (d VYY) aa +bd  bd + ab’
\\e a)\¢ @)) O\ \ea +ad dd + v

=dd +cb =dd  (mod p)

[SL2(Z) : I'1(p)] = =p*— 1L

Since ker(0p) = I'1(p), we obtain that [[o(p) : I'1(p)] = p — 1. Hence

[SLa(Z) : T'1(p)]

[SLa(Z) : To(p)] = [To(p) : T1(p)]

=p+1.

For general integers ¢ this is solved similarly. We can write ¢ = [[, p;"*, where p;
are distinct prime numbers and n; € N. Then there exists a homomorphism

¢q : SLo(Z) — [ [ SLa(Z/p}" Z),



from the reduction mod p*, for all i. By the Chinese remainder theorem, for a
positive integer a we have that a (mod ¢) is isomorphic to a (mod p;'*) for all .

Hence
r={ (¢ 5)ese@ (¢ 0)= (") tmoasrvl.

Then I'(g) is the kernel of the homomorphism ¢, and the quotient SL2(Z)/I'(q)
is isomorphic to a subgroup of [[, SLa(Z/p;"Z), so it is finite. Again from the
inclusions I'(¢) € I'1(q) € I'p(g) we obtain that the other subgroups have finite
index as well.

3. Let G be a group and let X be a set of which G acts on the left, where the action
of g € G on z € X is denoted g - . We denote by C(X) the space of all functions
f: X—C.

a)

Show that G acts on the right on C(X) by

(f-9)(x)=f(g-z)

for f € C(X), g€ G and z € X.
Solution:

Let f € C(X) be arbitrary. Then for every z € X and the identity element e € G
we have

(f-e)(x) = fle-z) = f(a).
Let h € G be arbitrary as well. Then

(f - (gh)(x) =

Let a: G x X — C* be a function. Show that defining
(f o 9)(z) = alg,2)f(g - z)
(for f € C(X), g € G and x € X) defines an action of G on C(X) if and only if
a(gh,z) = a(h,z)a(g,h - x) (3)
for all (g,h) € G*> and z € X.

Solution:

Let z € X be arbitrary. Let e € G be the identity element and g, h € G arbitrary.
Then

(fee)(@) =ale,z)f(z) = f(z) <= 1=alex)
< ale,z) = ale,x)ale, z)

— a(e?, z) = ale,z)ale,e - x),



so (e, x) satisfies equation (3). We further have

a(gh,z)f((gh) - x) = (f e (gh))(z)
= ((feg)eh)(x)
= a(h,z)(f e g)(h-x)
= a(h,z)a(g,h - x)f((gh) - ©),

which holds if and only if a(gh,x) = a(h,z)a(g, h - x).
c) Let v: X — C* be any function. Show that

g =)
olg,) = y(x)

defines a function with the property of Question b).
Solution:
Let g,h € G and x € X be arbitrary. Then

(gh)-z) _ y(h-2) A(g-(h-x))
() () (h- )

so equation (3) is satisfied and by part b) we are done.

a(gh,a:) = = a(h,x)a(g, h - .’13)7

4. Let G be a group acting transitively on a non-empty set X. Let a: G x X — C* be
a function satisfying the relation (3) of the previous exercise. We denote again by e
the corresponding action of G on C(X). We also denote by C(G) the space of functions
on G.

Let H be a subgroup of G. We denote by Vj the space of f € C(X) such that feh = f
for all h € H.

a) Let zo9 € X be fixed. Let A be the linear map
X Vi — C(G)

defined by
A(f)(g9) = f(g - z0)a(g, o).

Show that A is injective.

Solution:

We have that f € C(X) is contained in the kernel of A if and only if A(f) maps
all elements of G to 1, i.e. A(f)(g) = 1 for all g € G. In other words, this means
that f(g - xo)a(g,x0) = 1 for all ¢ € G. But then f(zg)a(e,zo) =1, for e € G
the identity element, and since a(e,zg) = 1 (by Question b)) we have f(xzg) = 1.
Since this holds for any x¢ € X, it holds for all elements in X, and f is the trivial
morphism. Hence the kernel of X is just the identity and the map above is injective.



b)

Show that for all f € Vg, the function f: A(f) satisfies

f(hg) = f(g) (4)

for all h € H and g € G.
Solution:
Let f € Vg, g € G and h € H be arbitrary. Then

F(hg) = X(f)(hg)
(
(

f((hg) - zo)a(hg, xo)
f(h-(g-z0))alg, zo)a(h, g - xo)
= (feh)(g-xo)a(g, o)
f(g-zo)alyg, zo)

A(f)(9) = f(g).

Let K be the stabilizer of xy in G. Show that the map x: K — C* defined by
x(k) = a(k,zg) is a group homomorphism.

Solution:

Let e € G be the identity, and g, h € K arbitrary. By Question b) we have

x(e) = ale,zg) = 1.

We further have

x(gh) = a(gh, o) = a(h,zo)a(g, h - x0) = a(h, z0)a(g, xo) = x(g)x(h),

so that x is a group homomorphism.
Show that for all f € Vi, the function f = A(f) also satisfies

flgk) = x(k) f(g) (5)

forall k € K and g € G.
Solution:
Let f € Vg, k € K and g € G be arbitrary. Then

flgk) = A(f)(gh)



e) Show that the image of A is the set of functions f: G — C such that (4) and (5)
are valid for all g € G, h € H and k € K. (Hint: given a function f which satisfies
those conditions, define explicitly a function f so that A(f) = f.)

Solution:
Let f be a function which satisfies those conditions. For g € G,z € X we define

f(g)

f(gx) = Oé(g,l')'

We will show that A(f) = f. First, we need to show that f is well-defined. Let
h € H be arbitrary. Then

so that f € V. Hence we are left to show that \(f) = f. This is the case if and
only if for all g € G we have

which holds since

a(g, o) = f(9)-

5. Let G = SLo(R), X = H and consider the action of G on X by M&bius transformations.

a) Show that for any integer k € Z, we can define

a(@ Z) 2) = (ez + d)f

to have an example of the situation of the two previous exercises. In what way is
this related to modular forms?

Solution:
Recall that the action of G on X by Mé&bius transformations is given by

a b Z_az—i—b
c d ez +d

for z € H.



Let k € Z be arbitrary. Let g = a b Jh = az b2 € SLs(R) be matrices.
C1 d1 Co dQ
Then

a(gh, ) = ((agcr + cadr)z + bacy + dido)”

+ cody)z + c1by + didy g
_ PRVYACT
(02Z+ 2) ( 02z+d2

+ by :
— do)* BTy
(c2z 4 d2) <61 <02z+d2 +ap
=a(h,z)a(g, h-x).

Hence « satisfies equation (3). In the context of modular forms, the function « is
precisely the automorphy factor, and a weakly modular function of weight £ and

level 1 is a meromorphic function f : H — C such that for all <Z Z) € SLy(Z)

we have

F(E5) = e+ atse),

for all z € H.

Show that if & # 0, this function « is not of the form given by Question c¢) of
Exercise 3.

Solution:

Let k£ > 0 be an integer. Assume that there is a function v : X — C* such that

v(g - 2)
a g7 'Z - 7
(9:2) v(2)
for all g € SLy(R) and z € H. Then for all g in the stabilizer StabSLQ(R)(z) we

have that a(g, z) = 18 =1, for some z € H.

Consider % G _11) € Stabgr,(r)(i). Note that

1/1 -1\ . i—-1 (i—-1)?% .
- c = = = 1.
2\1 1 i+1 -2

Then we would have that
L A S R AR
ol 1))\ ) T

<1+Z> :e%k:2§’
V2

which is never true for any k > 0.

which implies that




