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Exercise Sheet 2

1. a) Show that the measure
dxdy

2
Y
on H (with coordinate z = = +iy) is invariant under the action of SLy(R): for any
g € SLy(R) and any p-integrable function f: H — C, we have

/fgzdu /f )dp(z

> € SL2(R) be arbitrary, and let f : H — C be a pu-integrable

M:

Solution:

a b
Let A = (c d
function. For z = x1 + iy; we will write Ao z = A(x1 + iy1) = w2 + iyg, for
zi,yi € R. Note that

Yo = M (ayr(cx1 + d) — cyr(azy + b)) = ’czyfld‘g
Then
/ f(za + in)dxgglyg = / f(za + iy2) ( ! )2 ez —I;d‘4dx2dy2
H Y3 H |z +dJ? Y3
:/ flxa +iy2) % i <|Cz;d|2>2da:2dyg

2 daod
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where we used the Cauchy-Riemann equations in the last line.

b) Let f: H — C be any function which is modular of weight k € Z. Show that the
function ¢ defined on H by

$(2) = | f(2)|Im(=)*/?

is modular of weight 0 (i.e., is an SLg(Z)-invariant function on H).
Solution:



Let A = <Ccl Z) € SLa(R) be arbitrary, and let f: H — C be modular of weight
k. Then
Pp(Aoz)=|f(Aoz)|Im(Ao 2)k?

m(z k/2
—les+ b (220 ) T = ot

¢) Suppose that f is furthermore meromorphic on H and modular of weight k& > 2.
Show that f is a cusp form if and only if ¢ is bounded on H.
Solution:
Let f be a cusp form. By modularity it is enough to consider the behavior on the
fundamental domain F. We need to show that ¢(z) is bounded on Im(z) > h, for
any h > 0. Since f be a cusp form, it is holomorphic and limyy,(,) o0 [f(2)] = 0.
Write f(z) = > 0% | a,e*™ and z = z + yi. Then
o
f(x + yz) — 21y Z aneQWinxe—Qw(n—l)y’
n=1
and since f is homolorphic, the sum on the right si finite. Hence there exists a
positive constant C such that

|f(z + yi)| < e 2mC.
Hence there exists a positive constant C' > 0 such that
[6(2)] = |£(:)|Im(2)? < e>™Clm(z)? < C

Next we will prove the other direction. Assume that ¢ is bounded on H.

Say that f is not holomorphic at oo. Then f has a pole at oo, and limyy, ;)00 f(2) =

oo. Hence ¢(z) is not bounded; contradiction.

Let f(z) = f(e?™). Assume that f(0) # 0 (so f is not a cusp form), then
6(0) = lim  f(z)m(z)

Im(z)—o00

E
2

is not bounded as f(z) # 0, but Im(z)g — 00; contradiction.

2. The goal of this exercise is to prove that the function A defined by

A(z) =e(z) H(l —e(nz))*

n>1
for € H is a cusp form of weight 12, where we recall that e(z) = €2 for z € C.

For z € C with sin(z) # 0, we define

cotan(z) = cos(2)

sin(z)

We fix a complex number 7 € H.



a)

Prove that the infinite product converges locally uniformly absolutely, and hence
that A is a well-defined holomorphic function on H.

Solution:

Note that it is enough to prove absolute local uniform convergence for the term
[[,>1(1—e(nz)). We need to show that the sum ) - |e(nz)| converges absolutely
locally uniformly. It is enough to show uniform convergence on

{z € H:Im(z) > d},

for some d > 0. Compute

Z‘e(nz)’ _ Z’eQTrinz’ _ Z e—27rnlm(z) < Z e—?ﬂ'nd7

n>1 n>1 n>1 n>1

which is a finite sum that converges absolutely and uniformly in z.

Show that cotan defines a meromorphic function on C with simple poles at z = k=
for k € Z with residue 1. Prove that

cotan(z) = —i(l L)

B 1— e—2iz

for z € C.
Solution:

Since cotan(z) = cos(z)/sin(z), cotan is a meromorphic function (because both
cos and sin are holomorphic). The poles of cotan are given by zeros of sin, which
are at z = km and are all simple. Since cos(km) # 0, it follows that cotan has
simple poles at z = kn, with k € Z.

The residue is given by

cos
Resy cotan(z) = Zlgilw(z — km) cotan(z) = c})liﬁ) sin((::))) = 1.
w
To obtain the formula for the cotangent, compute
e +e 7 1+e 22 2
cotan(z) = e ek —z(l - m)

Let m > 0 be an integer and define meromorphic functions f,,, and g,, by
fm(z) = cotan((m + %)z) cotan((m + 3)z/7)

and g,,(2) = 271 f,,(2). Show that g,, has

i) simple poles at wk/(m + 3) for k € Z, k non-zero;

ii) simple poles at wk7/(m + 3) for k € Z, k non-zero integer;
iii) a triple pole at z = 0.

Solution:



i) Note that

(2) = 1 cos((m + %)z) cos((m + %)Z/T)

m\ 2 ’

g 2 sm((m $)z) sin((m + 3)z/7)

for z = é , the factor St i ) ) has a simple pole, while the factor sm((m+ V2T)

is non-zero. Hence g,, has a simple pole at z.

ii) The argument is completely analogous to part (¢); where we take z = kn T

+7
iii) The function cotan has a simple pole at 0, just like z — 1/z. Hence g, has a
triple pole, by additivity of the valuation.

d) Show that

1 1
Reszzwk/(er%) gm(2) = — cotan(wk/T), Res _ ket ) gm(2) = — cotan(rkT),
and .
ReSz:o gm(z) = _§(T + ’7'71).
Solution:
Compute:
Res 9gm (2) lim ((2 hn ) ! cotan((m + %)z) cotan((m + 3)z/ ))
m - - - 5 5 T
/) sk (m+ ) m+y) ’ 2
1 1
i () o Destantotn 3ot (207520 B2
where we have set w : 71 Since
+3
1
lim ———
w—0 ( )+ kﬂ') km
lim (w(m otan( (m+ 1)) =1

w—0

1
lim (cotan (M + lmr)) = cotan(km /1),
w—0 T T

we obtain that

1
Resz 7rk/(er1) gm(z) = T cotan(km /7).

The next residue is computed similarly:

Res 1,9m(2) = lim | ((2 b ) 1cotan((m + 3)z) cotan((m + %)z/7‘)>

a=mkr/(m+3) s/ (mt m+ g

» 1 w(m + 1)
= E}E}) ((w(m NNV km’) w(m + &) cotan(w(m + 3) + k77) cotan <7’2))

1 1
— lim T cotan(w(m + 1) + krr) - 20D oean (@m T2}
w—0 W(m+§)+kﬂ'7' T T




Z(m+%)7kﬂ"r .
where we have set w := ———=5——. Since
m+§

T

I —
530 (w(m + %) + kﬂ'T) km

lim (w(m + %) cotan <w(m + b))
w—0 T T

Uljii% (cotan (w(m + 3) + k7)) = cotan(kn7),

1

we obtain that

1
Res = cotan(mkT).

z:wk’r/(m-i-%) gm (Z)

The Laurent expansion of cotan(z) near z =0 is

_1 = 3
cotan(z) = 3 + 0(z?).
Applying this to f,,(z), we get
1 (m+ 1)z
cotan ((m + 1)z) = m+ s - 3 27 1 0(2%),
1 1
cotan (m+3)z = 7'1 — (m+2)z+0(23).
T (m+ 35)z 37
Multiplying:
1 (m+3)z 3 T (m+3)z 3
fm(2) ((m+ )z 3 +06E) (m+ %)z 3 +0()
Expanding,
1
Ja(®) = —— 15— 5 — 5= +O().

(m+3)222 3 37

Since gm(z) = fmz(z) , we extract the coefficient of %:
1 ~1
Res.—ogm(2) = —5(7' +7).

Let I" be the polygonal contour in C joining in counterclockwise order the vertices
1, 7, —1, —7 and 1 again. Prove that the functions g,, are uniformly bounded on I
for all m, and prove that

T d —1 -7 d 1 d
lim gm(z)dz:/ & —/ dz-i—/ = —/ =
m—+00 Jp 1 ? T z -1 < —r %

(Hint: compute the limit of g,,(z) for z in T outside of the vertices.) Deduce the
value, as a function of 7, of

mgr_EOO exp (3 /1“ gm(z)dz) .



Solution:
Since g, only has poles at points on the real axis, each g,, is bounded on T

Moreover
1 2
cotan | (m+ |z )| <1+ ———
2 |€f2z(m+§)z _ 1|

2
<1
-+ | _22(m+%)1m(2’) o 1’
<1+ 2

|e—2i(m+%)lm(—7) - 1|

The expression on the right converges as m — oo, so that cotan((m + 1)z) is
uniformly bounded for all z € T'.

An analogous argument shows that cotan((m+ 3)z/7) is uniformly bounded. Since
1/z is also bounded on I', we obtain that g, is uniformly bounded on I" for all m.
Next, we compute limy, oo [1 gm(2)dz. Note that exp((m+3)z) — 0 as m — oo
if and only if Re(z) < 0. Thus cotan((m + 1)z) =i <1e_212(m+%)2 - 1) — 1, as
m — oo, if and only if Im(z) < 0.

On the other hand, cotan((m + 1)z) — —i if and only if Im(z) > 0. Hence
cotan((m + 1)z/7) — i, as m — oo, if and only if Im(z/7) < 0, which holds
if and only if Im(27) < 0. Note that

Im(27) = Im(z)Re(T) — Re(z)Im(7),

which is greater than 0 if and only if

Re(7)
Im(z) Tm(r)
From this expression, it is clear that for z above the straight line in the complex
plane connecting 7 to —7, we have that Im(z7) > 0. Hence cotan((m + 1)2)
converges to i, as m — o0, if z € (—7,1) U (1,7), and cotan((m + 3)z) converges
to —i, as m — oo, if z € (1,—1) U (=1, 7).
Thus we conclude that f,,(z) converges to 1, as m — oo, on the line segments 1, 7
and —1,—7, and f,,(2) converges to —1, as m — oo, on the line segments 7, —1
and —, 1.

> Re(z)

By the dominated convergence theorem we have

Jim [ )% = [ i g%
(L)
(L)%

2(log(7) + log(—7))

=4 (log(T) - 7;) = 4log G) .



Hence

lim exp (3/Fgm(z)> dz = exp (log(T/i))12

m—0o0

— 12

Prove that for all m, we have

| mEL/2
2 _ ~ 1 1 1
/Fgm(Z)dZZ B RARARELEDS %(e(—lw) —1 e(k/7) - )

Solution:

By the residue theorem we have

Lm-~-1/2J
—1 K 2
/gm(z)dz = —omi” +3T + 2mi Z —(cotan(mkT) + cotan(mwk /7))
T z el s
which is equivalent to
Lm+1/2J
2mi d ~ 1
%(T +7r Y+ / gm(z)—z =4 %(cotan(ﬂkr) + cotan(mk /7))
r N k=1
I.m+l/2j

P % <e(—ki) -1 e(k/Tl) — 1) '

Deduce that
lim exp<3/gm(z)dz) = M,
r

m——+o00 A(T)

and conclude that A € M{,. (This proof is due to Siegel.)

Solution:

We are grateful to Cajetan Tulej for suggesting this elegant solution.
We firstly obtain from part f) that

)

lim_exp (3/Fgm(2)dZ> =e(—(r+77"))exp <:111c <e(—ki) -1 e(k/T1

Now observe that for all k > 1

|€(—]€T)‘ — e27rkImT > 1,

’6(]{7/7')‘ _ ekaIm’r/h’\Z >1

=)



hold, so that using the geometric series expansion (after rewriting the terms), we
get

i;t (e(—ki) -1 e(k:/j) - 1) -3 (1 i(S(Tk)v) 1 i(;(k—/l:/)f)>

k=1 k=1

g

(e(kT)e(nkT) —e(—k/T)e(—kn/T))

v
Nk

=~
Il
—
3
i
=)

(e(nkt) —e(—kn/T1)).

o
]2

3
i
Il
i)
I

Recalling that log(z — 1) = — Y2, % for |z| < 1, we rewrite this further as
o0 o0
n=1k=1

Inserting this into our initial equality, we find that

e(nkt) — e(—kn/7)) = —log(e(n) — 1) +log(e(—n/7) — 1).
n=1

w\H

oo 24
n}iinm exp (3/Fgm(z)dz> =e(—(T+77 1)) exp (Z —log(e(nt) — 1) +log(e(—n/7) — 1))
24
=t T ()

n=1
_e(=1/m) Lzt —e(=n/7)*
e(r) Hn>1(1 —e(nt))*

A(=1/7)
A7)

as was to be shown. From part e) it then follows that

A(A‘(lT/)T) 2 A ((2 _01) -T> — A(=1/7) = 72A(7).

On the other hand, we clearly also have by periodicity of e that

A <<(1) 1) .T> ING)

As these two matrices generate PSLy(7Z) and 7 € H was arbitrary, we conclude
that A defines a modular form of weight 12. (The above relation 7!2 = %
also implies that it is not the zero function.)

It remains to be shown that A is a cusp form. Transferring A to A:D* > C,

given by
A w):wH(l—w )#

we see that it has continuation to 0, namely &(O) = 0, which proves A € MY,.






