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1. a) Show that the measure

µ =
dxdy

y2

on H (with coordinate z = x+ iy) is invariant under the action of SL2(R): for any
g ∈ SL2(R) and any µ-integrable function f : H → C, we have∫

H
f(g · z)dµ(z) =

∫
H
f(z)dµ(z).

Solution:

Let A =

(
a b
c d

)
∈ SL2(R) be arbitrary, and let f : H → C be a µ-integrable

function. For z = x1 + iy1 we will write A ◦ z = A(x1 + iy1) = x2 + iy2, for
xi, yi ∈ R. Note that

y2 =
1

|cz + d|2
(ay1(cx1 + d)− cy1(ax1 + b)) =

y1
|cz + d|2

Then∫
H
f(x2 + iy2)

dx2dy2
y22

=

∫
H
f(x2 + iy2)

(
1

|z + d|2

)2 |cz + d|4

y22
dx2dy2

=

∫
H
f(x2 + iy2)

∣∣∣∣dAdz
∣∣∣∣2( |cz + d|2

y2

)2

dx2dy2

=

∫
H
f(A(x1 + iy1))

∣∣∣∣dAdz
∣∣∣∣2 dx2dy2y21

=

∫
A(H)

f
(
A−1 (A(x1 + iy1))

) dx1dy1
y21

=

∫
H
f(z)

dx1dy1
y21

,

where we used the Cauchy-Riemann equations in the last line.

b) Let f : H → C be any function which is modular of weight k ∈ Z. Show that the
function ϕ defined on H by

ϕ(z) = |f(z)|Im(z)k/2

is modular of weight 0 (i.e., is an SL2(Z)-invariant function on H).
Solution:



Let A =

(
a b
c d

)
∈ SL2(R) be arbitrary, and let f : H → C be modular of weight

k. Then

ϕ(A ◦ z) = |f(A ◦ z)|Im(A ◦ z)k/2

= |cz + d|k|f(z)|
(

Im(z)

|cz + d|2

)k/2

= ϕ(z).

c) Suppose that f is furthermore meromorphic on H and modular of weight k ≥ 2.
Show that f is a cusp form if and only if ϕ is bounded on H.
Solution:
Let f be a cusp form. By modularity it is enough to consider the behavior on the
fundamental domain F . We need to show that ϕ(z) is bounded on Im(z) ≥ h, for
any h > 0. Since f be a cusp form, it is holomorphic and limIm(z)→∞ |f(z)| = 0.
Write f(z) =

∑∞
n=1 ane

2πinz and z = x+ yi. Then

f(x+ yi) = e−2πy
∞∑
n=1

ane
2πinxe−2π(n−1)y,

and since f is homolorphic, the sum on the right si finite. Hence there exists a
positive constant C̃ such that

|f(x+ yi)| ≤ e−2πyC̃.

Hence there exists a positive constant C > 0 such that

|ϕ(z)| = |f(z)|Im(z)
k
2 ≤ e−2πyC̃Im(z)

k
2 < C

Next we will prove the other direction. Assume that ϕ is bounded on H.
Say that f is not holomorphic at ∞. Then f has a pole at ∞, and limIm(z)→∞ f(z) =
∞. Hence ϕ(z) is not bounded; contradiction.
Let f̃(z) = f(e2πiz). Assume that f̃(0) ̸= 0 (so f̃ is not a cusp form), then

ϕ(0) = lim
Im(z)→∞

f̃(z)Im(z)
k
2

is not bounded as f̃(z) ̸= 0, but Im(z)
k
2 → ∞; contradiction.

2. The goal of this exercise is to prove that the function ∆ defined by

∆(z) = e(z)
∏
n≥1

(1− e(nz))24

for z ∈ H is a cusp form of weight 12, where we recall that e(z) = e2iπz for z ∈ C.

For z ∈ C with sin(z) ̸= 0, we define

cotan(z) =
cos(z)

sin(z)
.

We fix a complex number τ ∈ H.



a) Prove that the infinite product converges locally uniformly absolutely, and hence
that ∆ is a well-defined holomorphic function on H.
Solution:
Note that it is enough to prove absolute local uniform convergence for the term∏

n≥1(1−e(nz)). We need to show that the sum
∑

n≥1|e(nz)| converges absolutely
locally uniformly. It is enough to show uniform convergence on

{z ∈ H : Im(z) ≥ d},

for some d > 0. Compute∑
n≥1

|e(nz)| =
∑
n≥1

|e2πinz| =
∑
n≥1

e−2πnIm(z) ≤
∑
n≥1

e−2πnd,

which is a finite sum that converges absolutely and uniformly in z.

b) Show that cotan defines a meromorphic function on C with simple poles at z = kπ
for k ∈ Z with residue 1. Prove that

cotan(z) = −i
(
1− 2

1− e−2iz

)
for z ∈ C.
Solution:
Since cotan(z) = cos(z)/ sin(z), cotan is a meromorphic function (because both
cos and sin are holomorphic). The poles of cotan are given by zeros of sin, which
are at z = kπ and are all simple. Since cos(kπ) ̸= 0, it follows that cotan has
simple poles at z = kπ, with k ∈ Z.
The residue is given by

Reskπ cotan(z) = lim
z→kπ

(z − kπ) cotan(z) = lim
ω→0

cos(ω)
sin(ω)

ω

= 1.

To obtain the formula for the cotangent, compute

cotan(z) = i
eiz + e−iz

eiz − e−iz
= i

1 + e−2iz

1− e−2iz
= −i

(
1− 2

1− e−2iz

)
.

c) Let m ≥ 0 be an integer and define meromorphic functions fm and gm by

fm(z) = cotan((m+ 1
2)z) cotan((m+ 1

2)z/τ)

and gm(z) = z−1fm(z). Show that gm has

i) simple poles at πk/(m+ 1
2) for k ∈ Z, k non-zero;

ii) simple poles at πkτ/(m+ 1
2) for k ∈ Z, k non-zero integer;

iii) a triple pole at z = 0.

Solution:



i) Note that

gm(z) =
1

z

cos((m+ 1
2)z)

sin((m+ 1
2)z)

cos((m+ 1
2)z/τ)

sin((m+ 1
2)z/τ)

.

for z = kπ
m+ 1

2

, the factor cos((m+ 1
2
)z)

sin((m+ 1
2
)z)

has a simple pole, while the factor cos((m+ 1
2
)z/τ)

sin((m+ 1
2
)zτ)

is non-zero. Hence gm has a simple pole at z.
ii) The argument is completely analogous to part (i); where we take z = kπ

m+ 1
2

τ .

iii) The function cotan has a simple pole at 0, just like z 7→ 1/z. Hence gm has a
triple pole, by additivity of the valuation.

d) Show that

Res
z=πk/(m+

1
2)

gm(z) =
1

πk
cotan(πk/τ), Res

z=πkτ/(m+
1
2)

gm(z) =
1

πk
cotan(πkτ),

and
Resz=0 gm(z) = −1

3
(τ + τ−1).

Solution:
Compute:

Res
z=πk/(m+

1
2)
gm(z) = lim

z→πk/(m+
1
2)

((
z − kπ

m+ 1
2

)
1

z
cotan((m+ 1

2)z) cotan((m+ 1
2)z/τ)

)

= lim
ω→0

((
1

ω(m+ 1
2) + kπ

)
· ω(m+ 1

2) cotan(ω(m+ 1
2)) · cotan

(
ω(m+ 1

2)

τ
+

kπ

τ

))
,

where we have set ω :=
z(m+

1
2)−kπ

m+
1
2

. Since

lim
ω→0

(
1

ω(m+ 1
2) + kπ

)
=

1

kπ

lim
ω→0

(
ω(m+ 1

2) cotan(ω(m+ 1
2))
)
= 1

lim
ω→0

(
cotan

(
ω(m+ 1

2)

τ
+

kπ

τ

))
= cotan(kπ/τ),

we obtain that
Res

z=πk/(m+
1
2)

gm(z) =
1

kπ
cotan(kπ/τ).

The next residue is computed similarly:

Res
z=πkτ/(m+

1
2)
gm(z) = lim

z→πk/(m+
1
2)

((
z − kπτ

m+ 1
2

)
1

z
cotan((m+ 1

2)z) cotan((m+ 1
2)z/τ)

)

= lim
ω→0

((
1

ω(m+ 1
2) + kπτ

)
ω(m+ 1

2) cotan(ω(m+ 1
2) + kπτ) cotan

(
ω(m+ 1

2)

τ

))

= lim
ω→0

((
τ

ω(m+ 1
2) + kπτ

)
· cotan(ω(m+ 1

2) + kπτ) ·
ω(m+ 1

2)

τ
cotan

(
ω(m+ 1

2)

τ

))
,



where we have set ω :=
z(m+

1
2)−kπτ

m+
1
2

. Since

lim
ω→0

(
τ

ω(m+ 1
2) + kπτ

)
=

1

kπ

lim
ω→0

(
ω(m+ 1

2)

τ
cotan

(
ω(m+ 1

2)

τ

))
= 1

lim
ω→0

(
cotan

(
ω(m+ 1

2) + kπτ
))

= cotan(kπτ),

we obtain that
Res

z=πkτ/(m+
1
2)

gm(z) =
1

πk
cotan(πkτ).

The Laurent expansion of cotan(z) near z = 0 is

cotan(z) =
1

z
− z

3
+O(z3).

Applying this to fm(z), we get

cotan
(
(m+ 1

2)z
)
=

1

(m+ 1
2)z

−
(m+ 1

2)z

3
+O(z3),

cotan

(
(m+ 1

2)z

τ

)
=

τ

(m+ 1
2)z

−
(m+ 1

2)z

3τ
+O(z3).

Multiplying:

fm(z) =

(
1

(m+ 1
2)z

−
(m+ 1

2)z

3
+O(z3)

)(
τ

(m+ 1
2)z

−
(m+ 1

2)z

3τ
+O(z3)

)
.

Expanding,

fm(z) =
τ

(m+ 1
2)

2z2
− τ

3
− 1

3τ
+O(z2).

Since gm(z) = fm(z)
z , we extract the coefficient of 1

z :

Resz=0gm(z) = −1

3
(τ + τ−1).

e) Let Γ be the polygonal contour in C joining in counterclockwise order the vertices
1, τ , −1, −τ and 1 again. Prove that the functions gm are uniformly bounded on Γ
for all m, and prove that

lim
m→+∞

∫
Γ
gm(z)dz =

∫ τ

1

dz

z
−
∫ −1

τ

dz

z
+

∫ −τ

−1

dz

z
−
∫ 1

−τ

dz

z
.

(Hint: compute the limit of gm(z) for z in Γ outside of the vertices.) Deduce the
value, as a function of τ , of

lim
m→+∞

exp
(
3

∫
Γ
gm(z)dz

)
.



Solution:
Since gm only has poles at points on the real axis, each gm is bounded on Γ.
Moreover ∣∣∣∣cotan((m+

1

2

)
z

)∣∣∣∣ ≤ 1 +
2

|e−2i(m+ 1
2)z − 1|

≤ 1 +
2

|e−2i(m+ 1
2)Im(z) − 1|

≤ 1 +
2

|e−2i(m+ 1
2)Im(−τ) − 1|

The expression on the right converges as m → ∞, so that cotan((m + 1
2)z) is

uniformly bounded for all z ∈ Γ.
An analogous argument shows that cotan((m+ 1

2)z/τ) is uniformly bounded. Since
1/z is also bounded on Γ, we obtain that gm is uniformly bounded on Γ for all m.
Next, we compute limm→+∞

∫
Γ gm(z)dz. Note that exp((m+ 1

2)z) → 0 as m → ∞

if and only if Re(z) < 0. Thus cotan((m + 1
2)z) = i

(
2

1−e−2i(m+1
2 )z

− 1

)
→ i, as

m → ∞, if and only if Im(z) < 0.
On the other hand, cotan((m + 1

2)z) → −i if and only if Im(z) > 0. Hence
cotan((m + 1

2)z/τ) → i, as m → ∞, if and only if Im(z/τ) < 0, which holds
if and only if Im(zτ) < 0. Note that

Im(zτ) = Im(z)Re(τ)− Re(z)Im(τ),

which is greater than 0 if and only if

Im(z)
Re(τ)

Im(τ)
> Re(z)

From this expression, it is clear that for z above the straight line in the complex
plane connecting τ to −τ , we have that Im(zτ) > 0. Hence cotan((m + 1

2)z)
converges to i, as m → ∞, if z ∈ (−τ, 1) ∪ (1, τ), and cotan((m + 1

2)z) converges
to −i, as m → ∞, if z ∈ (τ,−1) ∪ (−1, τ).
Thus we conclude that fm(z) converges to 1, as m → ∞, on the line segments 1, τ
and −1,−τ , and fm(z) converges to −1, as m → ∞, on the line segments τ,−1
and −τ, 1.
By the dominated convergence theorem we have

lim
m→∞

∫
Γ
fm(z)

dz

z
=

∫
Γ

lim
m→∞

fm(z)
dz

z

=

(∫ τ

1
−
∫ −1

τ
+

∫ −τ

−1
−
∫ 1

−τ

)
dz

z

= 2

(∫ τ

1
−
∫ 1

−τ

)
dz

z

= 2(log(τ) + log(−τ))

= 4

(
log(τ)− πi

2

)
= 4 log

(τ
i

)
.



Hence

lim
m→∞

exp

(
3

∫
Γ
gm(z)

)
dz = exp (log(τ/i))12

= τ12

f) Prove that for all m, we have

∫
Γ
gm(z)dz = −2iπ

3
(τ + τ−1) + 8

⌊m+1/2
π

⌋∑
k=1

1

k

( 1

e(−kτ)− 1
− 1

e(k/τ)− 1

)
.

Solution:
By the residue theorem we have

∫
Γ
gm(z)

dz

z
= −2πi

τ + τ−1

3
+ 2πi

⌊m+1/2
π

⌋∑
k=1

2

π
(cotan(πkτ) + cotan(πk/τ)),

which is equivalent to

2πi

3
(τ + τ−1) +

∫
Γ
gm(z)

dz

z
= 4i

⌊m+1/2
π

⌋∑
k=1

1

k
(cotan(πkτ) + cotan(πk/τ))

= 8

⌊m+1/2
π

⌋∑
k=1

1

k

(
1

e(−kτ)− 1
− 1

e(k/τ)− 1

)
.

g) Deduce that

lim
m→+∞

exp
(
3

∫
Γ
gm(z)dz

)
=

∆(−1/τ)

∆(τ)
,

and conclude that ∆ ∈ M0
12. (This proof is due to Siegel.)

Solution:
We are grateful to Cajetan Tulej for suggesting this elegant solution.
We firstly obtain from part f) that

lim
m→∞

exp

(
3

∫
Γ
gm(z)dz

)
= e(−(τ + τ−1)) exp

( ∞∑
k=1

1

k

(
1

e(−kτ)− 1
− 1

e(k/τ)− 1

))24

.

Now observe that for all k ⩾ 1

|e(−kτ)| = e2πkImτ > 1,

|e(k/τ)| = e2πkImτ/|τ |2 > 1



hold, so that using the geometric series expansion (after rewriting the terms), we
get
∞∑
k=1

1

k

(
1

e(−kτ)− 1
− 1

e(k/τ)− 1

)
=

∞∑
k=1

1

k

(
e(kτ)

1− e(kτ)
− e(−k/τ)

1− e(−k/τ)

)

=

∞∑
k=1

∞∑
n=0

1

k
(e(kτ)e(nkτ)− e(−k/τ)e(−kn/τ))

=
∞∑
n=1

∞∑
k=1

1

k
(e(nkτ)− e(−kn/τ)) .

Recalling that log(z − 1) = −
∑∞

k=1
zk

k for |z| < 1, we rewrite this further as

∞∑
n=1

∞∑
k=1

1

k
(e(nkτ)− e(−kn/τ)) =

∞∑
n=1

− log(e(nτ)− 1) + log(e(−n/τ)− 1).

Inserting this into our initial equality, we find that

lim
m→∞

exp

(
3

∫
Γ

gm(z)dz

)
= e(−(τ + τ−1)) exp

( ∞∑
n=1

− log(e(nτ)− 1) + log(e(−n/τ)− 1)

)24

= e(−(τ + τ−1))
∏
n⩾1

(
1− e(−n/τ)

1− e(nτ)

)24

=
e(−1/τ)

e(τ)
·
∏

n⩾1(1− e(−n/τ))24∏
n⩾1(1− e(nτ))24

=
∆(−1/τ)

∆(τ)

as was to be shown. From part e) it then follows that

∆(−1/τ)

∆(τ)
= τ12 ⇝ ∆

((
0 −1
1 0

)
· τ
)

= ∆(−1/τ) = τ12∆(τ).

On the other hand, we clearly also have by periodicity of e that

∆

((
1 1
0 1

)
· τ
)

= 112∆(τ).

As these two matrices generate PSL2(Z) and τ ∈ H was arbitrary, we conclude
that ∆ defines a modular form of weight 12. (The above relation τ12 = ∆(−1/τ)

∆(τ)

also implies that it is not the zero function.)
It remains to be shown that ∆ is a cusp form. Transferring ∆ to ∆̃ : D∗ → C,
given by

∆̃(w) = w
∏
n⩾1

(1− wn)24,

we see that it has continuation to 0, namely ∆̃(0) = 0, which proves ∆ ∈ M0
12.




