D-MATH Number Theory II 19.03.2025
Prof. Dr. Emmanuel Kowalski

Solutions: Exercise Sheet 3

1. For z a complex number denote by Im(z) the imaginary part. Define the following

functions
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for z € H, where € > 0 is a parameter.

a) Prove that the series G .(z) converges absolutely and locally uniformly for z € H.
Solution:
Let £ > 2 be an integer and z € H arbitrary. Then

o0

Sy | S #H{lm ) €2°| N < e+ nl SN+ 1},

— <
k — k
|mz + n| z N

N=1 N<|mz+n|<N+1 =1

Note that
#{(m,n) | N <|mz+n|<N+1} <7(N+1)? —7N? < N.

Thus the above sum is, as k > 2
(o]
<Y NP <o
N=1

Now we see that,

Gy < E |mz 4 n|27% + E |mz +n|727%.
0<|mz+n|<1 1<|mz+n|

The first sum has a finite number of summands, and the second sum is absolute-
ly and locally uniformly convergent by the previous argument. Thus the sum of
Go . are convergent absolustely and locally uniformly, thus defines a holomorphic
function on H.



b) Let v = (Z Z) be an element of SLy(Z). Show that

Gas(vz) = (cz + d)Qlcz + d|25G275(z).

for any z € H.
Solution:

To see the transformation law we first note that every v € SLy(Z) induces a
bijection from 72\ {(0,0)} to itself by right multiplication. Also one checks that,

(ma +nc)z + (mb+nd)  m'z+n

myz+n = cz+d ez +d ]

Combining these two facts, we conclude that

(cz + d)?|cz + d|*
Ga,e(yz) = Z / Y, 1|2e
(T e0.0) (m'z 4+ n')|m'z + n/|

= (cz + d)?|cz + d[*Ga.(2).

c) For e > —1/2 and z € H, define

dt
I = .
(e,2) /R (21 02z + 1=

Prove that the series -

Z I(e,mz)

m=1

converges absolutely and locally uniformly for ¢ > —1/2 and prove that

hln(Gg(E i I(e,mz) ) = Ga(z2).
m=1

Solution:
Let
ft) :== (mz+t)"2|mz +t| 7%,
with implicit dependence on mz. Now as we have proved the absolute conver-

gence of the > f(n) we will freely change the order of summations and order of
integration and summation, as follows.

62,5( = Gao(z Z I(e,mz)
=0
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By the mean value theorem on n <t <n + 1 we get that

If(n) — f()| < sup |f'(u)] < |mz+n| 372

n<u<n+1

Hence, the sum is absolutely convergent for € > —1/2 and thus lim._,o é275 exists
and defines a holomorphic function. We calculate,

hmG2s()
e—0
. L= 1 1
PR N DI e Z<m2+n+1mz+”>
n#0 m=1 LneZ ner
*Z ZZ (mz+n)?
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d) Let
dt

Ite) = /R (i +1)2(1 + £)%

for e > —1/2. Prove that

1(e)
I(e.2) = it
and prove that the function I is differentiable at 0 with I'(0) = —.

Solution:
Let z = x + 4y. Then changing variable ¢ — yt — x we get that,

dt

I(e,x+1 :/ - -
ot = | et it

1 / dt RG]
- y1+2€ R (t—|—i)2|t—|—i’25 - y1+2€'

Differentiating under the integration sign and then integrating by parts we get
log(1 + t2 log(1+ )|~
I’(O):—/ og(1+1¢%) ,, _ log(1+1%)
R

that,
_/ 2tdt
t+i)2  t+i r (t+1)(1+12)

—0o0
B / LS S / dt
O Jr(E+9)2 1+ JgtE+1l

Using the above two results we compute that,

- . —  I(e) .. I(e)¢(1+2e)
oy 2 Tem) =gy 2 (e = B TGy



Recall the expansion

C(1+2) = % +O(1).

Using that I(0) = 0 we have that above limit equals to
1(e) '(0)

li = .
50 2eIm(2)1+2e 2Im(z)

e) Deduce that
lim G (2) = G5(%2),

e—0
and that G3 is a (non-holomorphic) modular form of weight 2.
Solution:
Compute that

lim Go(2) = hm (Gge + Z I(e,mz > = Ga(z) — 2In:(z) = G5(2).

e—0
=1

Then by part b) together with letting ¢ — 0, we obtain that G% transforms like a
modular form of weight 2.

f) Conclude that for z € H and g = (Z 2) € SLy(Z), we have
Go(gz) = (cz + d)*Ga(2) — mic(cz + d).

Solution:

Since G3(z) transforms as a modular form of weight 2, we have that

Ga(v2) = (cz +d)*Ga(z) = QIH:E’YZ) — (cz+d)” QIn:(z)
- 21£(z> (Jez +df” = (cz +d)?)
= mic(cz + d),

concluding the result.

2. Let ' C SLg(Z) be a finite-index subgroup. We denote by T" the image of I" in PSLy(Z) =
SLao(Z)/{£1}.

A modular form of weight k € Z for I' is a holomorphic function f: H — C such that

flg2) = (e + )" f(2)

for all g € I' and z € H.



a) With the usual rules for x = oo, prove that SLy(Z) acts on the set P!(Q)

QU {oo} by
a b .$_ax+b
c d Ccx+d

We can define an action on oo by setting

@ by oo
c d) T

b
d

o by, d_
c d c

a b x—a$+beQ
c d cx+d ’

this operation is well-defined. What is left to show is if A, B € SLa(Z), then

Solution:

with ad — bd =1, if ¢ # 0 and <Z >‘oo:ooifc:O. and

Since clearly

A-(B-2)=(AB) -2

Let

Applying B to z, we obtain:

Now applying A to B - z:

A-(B-z):A-<W>.

coz + do
By the definition of the M&bius action:
A <a2z+b2> @ 335132 + b1

- a22+bso
oz + da @2zt v d,

Multiplying numerator and denominator by csz + da:

ai(azz + ba) + bi(coz + d2)
c1(asz + b)) + di(caz +ds)’

A-(B-2)=

Expanding both terms:

(arag + bica)z + (a1be + bids)
(crag + dica)z + (c1be + dldg)‘

A-(B-z)=



The matrix product AB is:
Ap— (@ b\ (a2 b2\ _ (aiap+bicy aiby + bidy
c1 di) \c2 do crag +dica ciby +dida)
Applying AB to z:

(a1ag + bica)z + (a1by + bids)

AB) -z = .
( )2 (crag + dica)z + (c1be + did2)

Since the expressions for A - (B - z) and (AB) - z are identical, we conclude that:
A-(B-z)=(AB) - z.

Thus, the Mobius action of SLa(Z) on Q is compatible with matrix multiplication.

Show that this action is transitive for I' = SLg(Z), and has finitely many orbits
in general. Give an example where it is not transitive. (Hint: use a subgroup from
Exercise 2 of Exercise Sheet 1.)

Solution:

We start by showing the action is transitive. By the solution of part a) it is enough
to show transitivity for elements in Q. Let z1, zo € Q be arbitrary. Choose a,b € Z
such that z; = %b, and ¢,d € Z such that ad — bc = 1. Then

a b
<C d>-21—0.

Further choose V', d’ € Z such that z; = Z—l,, and a, ¢ € Z such that o’d —b'd = 1.

Then
a/ bl b/
(a d'> =g =n

a b a b
d d)\e a) T

Since the action is transitive, for any x € P1(Q) we have a bijection:

Hence

so the action is transitive.

SLy(Z)/Stab, (SLs(Z)) — PX(Q)

which sends gStab,(SL2(Z)) to ¢ - =. Since the index of I" in SLg(Z) is finite,
we have that the cardinality of '\ P}(Q), which is equal to the cardinality of
I'\ SL2(Z)/Stab,(SLa(Z)), is finite. Hence there are only finitely many orbits.

To give an example of a group for which the action is not transitive, we consider the
congruence subgroup I'g(p) from Exercise sheet 1 (for p a prime). Let (Z Z) €
To(p), so that d # 0. Then



is a fraction whose denominator is not divisible by p (as otherwise ad — be # 1,
since p | ¢). On the other hand,

(b weteria

is equal to oo if ¢ = 0 or a fraction in Q whose denominator is divisible by p. Hence
0 and oo lie in different orbits and the action is not transitive.

By definition, a cusp of I' is an orbit of the action of I' on P}(Q).

¢) Let x € P}(Q). Prove that the image in T of the stabilizer T, of x is infinite cyclic,
and more precisely that there exists o, € SLa(Z) and h € Z such that o,00 = x
and

1 h 1 h
Uglfzaz:{(o 1n>|nEZ} or axeaglz{j:(O 1n>|n6Z}

(Hint: consider first the case x = 0.)

Solution:

Let z € PY(Q). By part a) we know that there is a o, € SLy(Z) for which
Oy 00 = .

Note that for all g € I';, we have that

(05'904) 00 = (0,'g) - 2 = 0,

so that o 1,0, C I'. To obtain the other inclusion, note that for v € I's,, we
have o;l'yax eIy, so that g = Uglaxvaz_lax S a;lfxax, which implies the other
inclusion as well.

Let (Z Z) € SLa(Z). Note that

ab._
e g) e=>

if and only if ¢ = 0, in which case ad = £1. Hence the stabilizer of oo in SLy(Z) is

[+ ves

Now note that I'ss < SLa(Z) is of finite index h, so that I'sx must be of the form

(o6 ) e
() es)

given by



d) What are o, and h in the case of the unique cusp of SLy(Z)?
Solution:

By the explicit description we gave in part a), together with part c), where we
have h = 1.

e) Let f: H — C be meromorphic and modular of weight k. Show that for every
cusp x of I'] there exists a function f,: D* — C such that

(f Ik 02)(2) = Jul /")

for z € H, where o, and h are as in Question c).

Solution:

. a b . 1 h\. .
Write o, = e d)€ SL2(Z). By part ¢) the matrix £+ g 1) 80 I's, and also
in I'. Then

o (£(5 1) 2) =t ra s (25 1) o)

= (:I:l)k(cz + d)_kf(ox - Z)
= (£ ([ [k 02)(2)

Hence if g € T, then f |, o0, is h-periodic, and moreover one can construct a

function f, as it was done in the lectures for classical modular forms. If — ((1) ff) €

I, then the function e=™*/"(f | 0,) is h-periodic in the sense that

ew(erh)/h _ _efTrz/h’

so that we can construct a function f such that f(z) = f(e(z/h)). Then we set
fe = €™/"f(2) to obtain the required function.

One says that f is holomorphic at the cusp x if fm is holomorphic at 0. The space of
all modular forms of weight & for I' which are holomorphic on H and at all cusps is
denoted M (T).

f) Check that My(SLa(Z)) coincides with the space M}, of the lecture.
Solution:

Since the action of SLy(Z) is transitive and hence only has only one orbit, it also
has only one cusp. Thus it is enough to consider the cusp at oco; the construction is
then the same as the one that was done in the lectures. Then My (SLa(Z)) = Mj,.

g) Let C C SLa(Z) be a set of coset representatives of I'\SL2(Z). Prove that if
f € My(T), then
I1/ kg

geC

is an element of M|c|, = M|c|;(SL2(Z)), which is non-zero if f is non-zero.
Solution:



Denote G(2) = [T,ca(f |k 9)(2) and ((“ Z) z> — (cz+ d)*. Since f is

holomorphic at infinity, it is bounded, so that the product remains bounded as
well. Let h € SLy(Z). Then using the cocycle relation from Eercise sheet 1 for «y

Gh-2) = T[(f Ik 9)(h-2)

_QGHZ (h-2)+d)*f(g-(h-2))

= geﬂcw(h, 2)7-k(gh, 2)f(g - (h- 2))

—iihz ll'mghz g-(h-2))

= i (h, 2)IW gEHC(f i 9)(2) = e (h, 2) WG (2)
g€

Hence G(z) € M, \c|k- From the expression above we see that G is non-zero if f is
non-zero.

h) Deduce that there exists a constant Aj > 0 such that

Z Uz(f) < A,

(&
zeM\H ~

for all non-zero f € My (I'), where e, = |Stab,(T")|.
Solution:

For C' as in part g) we have that h(z)[[,cc(flkg) € My(SL2(Z)). Then by the
k/12 (or the valence formula) from the lectures, we have

v, (h Clk
)+ Y Ok
2€SLo(Z)\H  ~
from which we obtain
s ) _[Clk
e, — 12
2€SLa(Z)\H

By the multiplicativity of the valuation, note that

B =3 0a(fleg),

geC

so that there exists a g € C' such that

v:(f) < |Clo(flk9),
so that alltogether

ol gy wh) O,

e, e, 12
zel'\H 2€SL2(Z)\H




Alternative solution:

Let f € My(I') be non-zero. From the valence formula in the lectures note that we

have _
vy (f k|PSLo(Z) : T
2 \Stakf ()r)y+ > o= i(z 2,
zel'\H ? PeCusps(I)
so by setting Ay := MQ(ZH, we have Zzep\H v(f) < Ag.
i) Prove that dim M (T') < Ay + 1.
Solution:

Let zg € C. With Ay as in the solution of the previous exercise, consider the linear
map My(I') — CA*1 mapping f to the coefficients (f(20), f'(20), ..., f4%)(29)).
We claim that this map is injective. Let f and g be modular forms of weight k and
level T', such that their g-expansions agree up to degree | Ai|. We will show that
then f = g. Note that then

Voo(f —g) > 14 |Ax| > Ap.

This yields a contradiction to the valence formula (stated in part h)), unless f—g =
0. This proves the injectivity of the map. Hence dim My (T") < Ay + 1.

3. Let £ > 2 be an even integer. Recall that the Bessel function Jj, is defined for z € C by

L= E_lﬁk) ()™

n_

a) Prove that for all z € C, we have

1 [27 . . ‘
- iz sm(ﬁ)fzkﬁdﬁ
Ji(2) 5 /0 e ,
and deduce that |J,(x)| <1 for all z € R.

Solution:

We start by writing out the power series expansion for the exponentia}9 e'? ?;“(19)
explicitly, followed by writing out the binomial expansion of sin(¢) = €5
follows




1 o iz sin(¥)—ikv 1 o —ik? — 1 . NTL e n
e Ay = — e Zﬁ(zz) sin(9)"dv

2w 0 2 0 oS
- 1 n 1 o k9 n
= E —(iz)"— e sin ()" dd
= n! 2r Jo

— 2 i —i\ "
1 1 o (e —
= E 7(22)”7 / e_lkﬂ 76 ,e d’lg
n! 2m Jo 2¢

(?) (_1)161‘19(77,71)64191(119
=0

n=0 0 l

— 1 z\"~ (n Y i9(n—1) ,—idl
— N e —1) = 1 1 (n 2 d9

;::On!<2> IE_;(z)( )27r/0 coe e

i( ) <1l nl—l 1217r / 7 miio(-i01 gy

For any integer a the integral fo% e dy is non-zero if and only if a = 0. Hence
only for n = k + 2l the integral above will be non-zero. Moreover

1 2w
— dd = 1.
27 0

Thus
k+21 1

- Z\™ g 1 1 o 71 wn— 1
nzo<2> ;l!(n—l)!(_l)l% 0 oy = Z() l.(k:+2l—l)!(_1)l

Let z € R. Then |J,(z)| <1 follows from the inequality

27
‘Jk:@f)’ < 1/ ‘ei(xsin(ﬂ)—kﬁ)’dﬂ
0

2T
-1 | cos(x sin(¥) — kv) + isin(z sin(d) — k9)|dd

b) Prove that the function f(z) = J,,(z) satisfies the differential equation
2f(2) 4 2f'(2) + (22 = n?)f(2) = 0.
Solution:

Taking the derivative of J,,(2):

Z)2k+n71

/ _ . (_1)k
Tn(2) = g (k) PR (5



Multiplying by z, we obtain:

o0

2J) (2 Zk' - (2k+n) (2

>2k+n

Taking the derivative again:

(D"

) = ];0 (g GErn@hdn—1) (2)2k+n 2

Multiplying by 22, we get:

o

27z Zk, 2k +n)(2k +n— 1) (2>2k+"

Then

2 " 12 o 1)k 2k+n.
J(2) + 20, —n2J, 27k|n+k)() Ak (k + n).

On the other hand

(—1)F 2\ 2(k+1)+n

k! (n + k)! <*> 4
(—1)H!

(k+1)!(n+k+1)!

(—=1)* 2\ 2k+n
M(Q) - (—4k(n + k))

M8

220, (2) =

=
Il
o

2\ 2(k+1)+n
(5) (—4(k+ 1) (n+k+1)

o

il
o

M

B
Il

1

Hence we are only left with the O-term in the sum over k:

1 sz\n
2 qn / 2 _ 2 _ s A0 —
22 I (2) + 20 (2) + (22 —n®)Jn(2) " (2) 4-0-n=0.

Thus, the Bessel function satisfies the differential equation.

4. Let p be a prime number. Recall that the Kloosterman sum S(m,n;p) is defined by

S(m,n;p) = Z e(W), zZ = 1 mod p.
xGFg



a) Show that S(m,n;p) € R.
Solution:

We have to show that S(m,n;p) doesn’t change under complex-conjugation. Note
that

S = Y oDty

z€Fy P

= Z e(m(—x);n(—a:))’ as (—x)(—z) = (—z)(—z) =1 (mod p)
z€Fy

— Z (mx;—nx) = S(m,n;p).
—z€Fy

b) Show that
> 1S(m,n;p)[* = p*N(p)

m,nekF,

where N (p) is the number of solutions (a,b,c,d) € (F) )* of the equations

at+b=c+d
al4+pt=cl4qdL

Solution:
For h an integer we will use the formula

DY) :6o,h:{(1): "= 0

else.

We compute the fourth power:

S lsmaplt= Y Y e(m<a+bp—c—d)>e(n(a1+blp_c

m,n€Fy mn€Fp a,b,c,de(Fp)>

o)

S Z€<m(a+bp—c—d)>

a,b,c,de(Fp)* \meFp

=p’ > 1=p°N(p),
(a,be,d)e((Fp)*)*
a+b=c+d
a T b l=c 1 4d !

where when going from the second to the third row we used the formula (1).

c) For (mg,ng) € (F))?, prove that

(p— DIS(mo,no;p)|* < D |S(m,nsp)|*

m,neF,



Solution:
Let a,mg,no € F be arbitrary. Then

moax + noa_1x>
)

S(amo,a 'ng;p) = Z e(

xZ =1 mod p

xeF? P
Z (moax+n0ﬁ>
g e e —
amEF? P
= S(mo,no; p).

Let m € F) be such that |S(m, n; p)| is minimal under all |S(m, n; p)|, for m € F.
Let a € F; be such that arm = mg. Then

Yo IStz Y Y ISt np)l*

m,neFy n€Fp meky
= > (= DIS(m,np)*
nckF,
= > (p—1)S(arm,a  n;p)|*
nekF,
= (p—1)|S(mo,a 'n;p)|*
nekF,

> (p = 1)IS(mo, no; p)|*.

d) Deduce that for (mg,n9) € (F))?, we have
S(mo, no;p) = O(p**).

Solution:
Let mg,no € F be arbitrary.
It suffices to prove that N(p) = O(p?), since then by part b) we obtain

> 1S(m,n;p)[* = p*N(p) = O(p").

m,neF,

Then from part c) it follows that
|S(mo, no; p)[* = Op?),
so that S(mg, ng; p) = O(p3/4).
Now we will prove N(p) = O(p?). First fix values a,b € F) with a +b # 0. If
(c,d) € (F;)Z satisfy
a+b=c+d (2)
ot =t dt (3)



then the value of ¢ + d is fixed and a=! + b~ # 0. Hence

c+d
is fixed. Since we know both ¢ + d and cd, there are at most 2 pairs (c,d) that
satisfy (2) and (3). Hence the number of choices for a, b, ¢, d in this case is bounded
by a constant times p?.
If a4+ b =0, then ¢+ d = 0, so that the solution is determined by (a, ¢), which in
total leves us with p? choices. Taking both cases into account, we obtain our claim.



