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Solutions: Exercise Sheet 3

1. For z a complex number denote by Im(z) the imaginary part. Define the following
functions

G2(z) =
∞∑
n=1

1

n2
+

∞∑
m=1

∑
n∈Z

1

(mz + n)2
,

G∗
2(z) = G2(z)−

π

2Im(z)
,

G2,ε(z) =
1

2

∑
(m,n) ̸=(0,0)

1

(mz + n)2
1

|mz + n|2ε
,

for z ∈ H, where ε > 0 is a parameter.

a) Prove that the series G2,ε(z) converges absolutely and locally uniformly for z ∈ H.
Solution:
Let k > 2 be an integer and z ∈ H arbitrary. Then

∞∑
N=1

∑
N<|mz+n|≤N+1

1

|mz + n|k
≤

∞∑
N=1

#{(m,n) ∈ Z2 | N ≤ |mz + n| ≤ N + 1}
Nk

.

Note that

#{(m,n) | N ≤ |mz + n| ≤ N + 1} ≪ π(N + 1)2 − πN2 ≪ N.

Thus the above sum is, as k > 2

≪
∞∑

N=1

N1−k < ∞.

Now we see that,

G2,ε ≤
∑

0≤|mz+n|≤1

|mz + n|−2−2ε +
∑

1≤|mz+n|

|mz + n|−2−2ε.

The first sum has a finite number of summands, and the second sum is absolute-
ly and locally uniformly convergent by the previous argument. Thus the sum of
G2,ε are convergent absolustely and locally uniformly, thus defines a holomorphic
function on H.



b) Let γ =

(
a b
c d

)
be an element of SL2(Z). Show that

G2,ε(γz) = (cz + d)2|cz + d|2εG2,ε(z).

for any z ∈ H.
Solution:
To see the transformation law we first note that every γ ∈ SL2(Z) induces a
bijection from Z

2 \ {(0, 0)} to itself by right multiplication. Also one checks that,

mγz + n =
(ma+ nc)z + (mb+ nd)

cz + d
=

m′z + n′

cz + d
.

Combining these two facts, we conclude that

G2, ε(γz) =
∑

(m′,n′ )̸=(0,0)

(cz + d)2|cz + d|2ε

(m′z + n′)|m′z + n′|2ε
= (cz + d)2|cz + d|2εG2,ε(z).

c) For ε > −1/2 and z ∈ H, define

I(ε, z) =

∫
R

dt

(z + t)2|z + t|2ε
.

Prove that the series
∞∑

m=1

I(ε,mz)

converges absolutely and locally uniformly for ε > −1/2 and prove that

lim
ε→0

(
G2,ε(z)−

∞∑
m=1

I(ε,mz)
)
= G2(z).

Solution:
Let

f(t) := (mz + t)−2|mz + t|−2ε,

with implicit dependence on mz. Now as we have proved the absolute conver-
gence of the

∑
f(n) we will freely change the order of summations and order of

integration and summation, as follows.

G̃2,ε(z) = G2,ε(z)−
∞∑

m=0

I(ε,mz)

=

∞∑
n=1

1

n2+2ε
+

∞∑
m=1

∑
n∈Z

(f(n)−
∫ n+1

n
f(t)dt)

=
∞∑
n=1

1

n2+2ε
+

∞∑
m=1

∑
n∈Z

∫ n+1

n
(f(n)− f(t))dt.



By the mean value theorem on n ≤ t ≤ n+ 1 we get that

|f(n)− f(t)| ≤ sup
n≤u≤n+1

|f ′(u)| ≪ |mz + n|−3−2ε.

Hence, the sum is absolutely convergent for ε > −1/2 and thus limε→0 G̃2,ε exists
and defines a holomorphic function. We calculate,

lim
ε→0

G̃2,ε(z)

=
1

2

∑
n̸=0

1

n2
+

∞∑
m=1

[∑
n∈Z

1

(mz + n)2
+
∑
n∈Z

(
1

mz + n+ 1
− 1

mz + n

)]

=
1

2

∑
n̸=0

1

n2
+

∞∑
m=1

∑
n∈Z

1

(mz + n)2

= G2(z)

d) Let

I(ε) =

∫
R

dt

(i+ t)2(1 + t)2ε

for ε > −1/2. Prove that

I(ε, z) =
I(ε)

Im(z)1+2ε

and prove that the function I is differentiable at 0 with I ′(0) = −π.
Solution:
Let z = x+ iy. Then changing variable t 7→ yt− x we get that,

I(ε, x+ iy) =

∫
R

dt

(x+ t+ iy)2|x+ t+ iy|2ε

=
1

y1+2ε

∫
R

dt

(t+ i)2|t+ i|2ε
=

I(ε)

y1+2ε
.

Differentiating under the integration sign and then integrating by parts we get
that,

I ′(0) = −
∫
R

log(1 + t2)

(t+ i)2
dt =

log(1 + t2)

t+ i

∣∣∣∣∣
∞

−∞

−
∫
R

2tdt

(t+ i)(1 + t2)

= −
∫
R

1

(t+ i)2
+

1

1 + t2
= −

∫
R

dt

t2 + 1
= −π.

Using the above two results we compute that,

lim
ε→0

∞∑
m=1

I(ε,mz) = lim
ε→0

∞∑
m=1

I(ε)

(my)1+2ε
= lim

ε→0

I(ε)ζ(1 + 2ε)

Im(z)1+2ε
.



Recall the expansion

ζ(1 + 2ε) =
1

2ε
+O(1).

Using that I(0) = 0 we have that above limit equals to

lim
ε→0

I(ε)

2εIm(z)1+2ε
=

I ′(0)

2Im(z)
.

e) Deduce that
lim
ε→0

G2,ε(z) = G∗
2(z),

and that G∗
2 is a (non-holomorphic) modular form of weight 2.

Solution:
Compute that

lim
ε→0

G2,ε(z) = lim
ε→0

(
G̃2,ε(z) +

∞∑
m=1

I(ε,mz)

)
= G2(z)−

π

2Im(z)
= G∗

2(z).

Then by part b) together with letting ε → 0, we obtain that G∗
2 transforms like a

modular form of weight 2.

f) Conclude that for z ∈ H and g =

(
a b
c d

)
∈ SL2(Z), we have

G2(gz) = (cz + d)2G2(z)− πic(cz + d).

Solution:
Since G∗

2(z) transforms as a modular form of weight 2, we have that

G2(γz)− (cz + d)2G2(z) =
π

2Im(γz)
− (cz + d)2

π

2Im(z)

=
π

2Im(z)
(|cz + d|2 − (cz + d)2)

= πic(cz + d),

concluding the result.

2. Let Γ ⊂ SL2(Z) be a finite-index subgroup. We denote by Γ the image of Γ in PSL2(Z) =
SL2(Z)/{±1}.

A modular form of weight k ∈ Z for Γ is a holomorphic function f : H → C such that

f(gz) = (cz + d)kf(z)

for all g ∈ Γ and z ∈ H.



a) With the usual rules for x = ∞, prove that SL2(Z) acts on the set P1(Q) =
Q ∪ {∞} by (

a b
c d

)
· x =

ax+ b

cx+ d
.

Solution:
We can define an action on ∞ by setting(

a b
c d

)
· ∞ =

a

c
,

with ad− bd = 1, if c ̸= 0 and
(
a b
c d

)
· ∞ = ∞ if c = 0. and

(
a b
c d

)
· −d

c
= ∞.

Since clearly (
a b
c d

)
· x =

ax+ b

cx+ d
∈ Q,

this operation is well-defined. What is left to show is if A,B ∈ SL2(Z), then

A · (B · z) = (AB) · z.

Let

A =

(
a1 b1
c1 d1

)
, B =

(
a2 b2
c2 d2

)
.

Applying B to z, we obtain:

B · z =
a2z + b2
c2z + d2

.

Now applying A to B · z:

A · (B · z) = A ·
(
a2z + b2
c2z + d2

)
.

By the definition of the Möbius action:

A ·
(
a2z + b2
c2z + d2

)
=

a1
a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1
.

Multiplying numerator and denominator by c2z + d2:

A · (B · z) = a1(a2z + b2) + b1(c2z + d2)

c1(a2z + b2) + d1(c2z + d2)
.

Expanding both terms:

A · (B · z) = (a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
.



The matrix product AB is:

AB =

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
.

Applying AB to z:

(AB) · z =
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
.

Since the expressions for A · (B · z) and (AB) · z are identical, we conclude that:

A · (B · z) = (AB) · z.

Thus, the Möbius action of SL2(Z) on Q is compatible with matrix multiplication.
b) Show that this action is transitive for Γ = SL2(Z), and has finitely many orbits

in general. Give an example where it is not transitive. (Hint: use a subgroup from
Exercise 2 of Exercise Sheet 1.)
Solution:
We start by showing the action is transitive. By the solution of part a) it is enough
to show transitivity for elements in Q. Let z1, z2 ∈ Q be arbitrary. Choose a, b ∈ Z
such that z1 =

−b
a , and c, d ∈ Z such that ad− bc = 1. Then(

a b
c d

)
· z1 = 0.

Further choose b′, d′ ∈ Z such that z1 = b′

d′ , and a′, c′ ∈ Z such that a′d′ − b′c′ = 1.
Then (

a′ b′

c′ d′

)
· 0 =

b′

d′
= z2.

Hence (
a′ b′

c′ d′

)(
a b
c d

)
· z1 = z2,

so the action is transitive.
Since the action is transitive, for any x ∈ P1(Q) we have a bijection:

SL2(Z)/Stabx(SL2(Z)) → P1(Q)

which sends gStabx(SL2(Z)) to g · x. Since the index of Γ in SL2(Z) is finite,
we have that the cardinality of Γ \ P1(Q), which is equal to the cardinality of
Γ \ SL2(Z)/Stabx(SL2(Z)), is finite. Hence there are only finitely many orbits.
To give an example of a group for which the action is not transitive, we consider the

congruence subgroup Γ0(p) from Exercise sheet 1 (for p a prime). Let
(
a b
c d

)
∈

Γ0(p), so that d ̸= 0. Then (
a b
c d

)
· 0 =

b

d
∈ Q



is a fraction whose denominator is not divisible by p (as otherwise ad − bc ̸= 1,
since p | c). On the other hand,(

a b
c d

)
· ∞ =

a

c
∈ P1(Q)

is equal to ∞ if c = 0 or a fraction in Q whose denominator is divisible by p. Hence
0 and ∞ lie in different orbits and the action is not transitive.

By definition, a cusp of Γ is an orbit of the action of Γ on P1(Q).

c) Let x ∈ P1(Q). Prove that the image in Γ of the stabilizer Γx of x is infinite cyclic,
and more precisely that there exists σx ∈ SL2(Z) and h ∈ Z such that σx∞ = x
and

σ−1
x Γxσx =

{(1 hn
0 1

)
| n ∈ Z

}
or σxΓxσ

−1
x =

{
±
(
1 hn
0 1

)
| n ∈ Z

}
.

(Hint: consider first the case x = ∞.)
Solution:
Let x ∈ P1(Q). By part a) we know that there is a σx ∈ SL2(Z) for which
σx · ∞ = x.
Note that for all g ∈ Γx we have that

(σ−1
x gσx) · ∞ = (σ−1

x g) · x = ∞,

so that σ−1
x Γxσx ⊆ Γ∞. To obtain the other inclusion, note that for γ ∈ Γ∞, we

have σ−1
x γσx ∈ Γx, so that g = σ−1

x σxγσ
−1
x σx ∈ σ−1

x Γxσx, which implies the other
inclusion as well.

Let
(
a b
c d

)
∈ SL2(Z). Note that

(
a b
c d

)
· ∞ = ∞

if and only if c = 0, in which case ad = ±1. Hence the stabilizer of ∞ in SL2(Z) is
given by {

±
(
1 b
0 1

)
: b ∈ Z

}
Now note that Γ∞ < SL2(Z)∞ is of finite index h, so that Γ∞ must be of the form{

±
(
1 hn
0 1

)
: n ∈ Z

}
or {(

1 hn
0 1

)
: n ∈ Z

}
.



d) What are σx and h in the case of the unique cusp of SL2(Z)?
Solution:
By the explicit description we gave in part a), together with part c), where we
have h = 1.

e) Let f : H → C be meromorphic and modular of weight k. Show that for every
cusp x of Γ, there exists a function f̃x : D

∗ → C such that

(f |k σx)(z) = f̃x(e
2iπz/h)

for z ∈ H, where σx and h are as in Question c).
Solution:

Write σx =

(
a b
c d

)
∈ SL2(Z). By part c) the matrix ±

(
1 h
0 1

)
is in Γ∞, and also

in Γ. Then

(f |k σx)

(
±
(
1 h
0 1

)
· z
)

= (cz + d)−kf

(
±
(
1 h
0 1

)
· (σx · z)

)
= (±1)k(cz + d)−kf(σx · z)
= (±1)k(f |k σx)(z)

Hence if g ∈ Γ, then f |k σx is h-periodic, and moreover one can construct a

function f̃x as it was done in the lectures for classical modular forms. If −
(
1 h
0 1

)
∈

Γ, then the function e−πz/h(f |k σx) is h-periodic in the sense that

eπ(z+h)/h = −e−πz/h,

so that we can construct a function f̃ such that f(z) = f̃(e(z/h)). Then we set
f̃x = eπz/hf̃(z) to obtain the required function.

One says that f is holomorphic at the cusp x if f̃x is holomorphic at 0. The space of
all modular forms of weight k for Γ which are holomorphic on H and at all cusps is
denoted Mk(Γ).

f) Check that Mk(SL2(Z)) coincides with the space Mk of the lecture.
Solution:
Since the action of SL2(Z) is transitive and hence only has only one orbit, it also
has only one cusp. Thus it is enough to consider the cusp at ∞; the construction is
then the same as the one that was done in the lectures. Then Mk(SL2(Z)) = Mk.

g) Let C ⊂ SL2(Z) be a set of coset representatives of Γ\SL2(Z). Prove that if
f ∈ Mk(Γ), then ∏

g∈C
f |k g

is an element of M|C|k = M|C|k(SL2(Z)), which is non-zero if f is non-zero.
Solution:



Denote G(z) =
∏

g∈C(f |k g)(z) and γk

((
a b
c d

)
, z

)
= (cz + d)−k. Since f is

holomorphic at infinity, it is bounded, so that the product remains bounded as
well. Let h ∈ SL2(Z). Then using the cocycle relation from Eercise sheet 1 for γ

G(h · z) =
∏
g∈C

(f |k g)(h · z)

=
∏
g∈C

(c(h · z) + d)−kf(g · (h · z))

=
∏
g∈C

γk(h, z)γ−k(gh, z)f(g · (h · z))

= γk(h, z)
|C|k

∏
g∈C

γ−k(gh, z)f(g · (h · z))

= γk(h, z)
|C|k

∏
g∈C

(f |k g)(z) = γk(h, z)
|C|kG(z)

Hence G(z) ∈ M|C|k. From the expression above we see that G is non-zero if f is
non-zero.

h) Deduce that there exists a constant Ak ≥ 0 such that∑
z∈Γ\H

vz(f)

ez
≤ Ak

for all non-zero f ∈ Mk(Γ), where ez = |Stabz(Γ)|.
Solution:
For C as in part g) we have that h(z)

∏
g∈C(f |kg) ∈ Mk(SL2(Z)). Then by the

k/12 (or the valence formula) from the lectures, we have

v∞(h) +
∑

z∈SL2(Z)\H

vz(h)

ez
=

|C|k
12

,

from which we obtain ∑
z∈SL2(Z)\H

vz(h)

ez
≤ |C|k

12
.

By the multiplicativity of the valuation, note that

vz(h) =
∑
g∈C

vz(f |kg),

so that there exists a g ∈ C such that

vz(f) ≤ |C|vz(f |kg),

so that alltogether∑
z∈Γ\H

vz(f)

ez
≤ |C|

∑
z∈SL2(Z)\H

vz(h)

ez
≤ |C|2k

12
=: Ak



Alternative solution:
Let f ∈ Mk(Γ) be non-zero. From the valence formula in the lectures note that we
have ∑

z∈Γ\H

vz(f)

|Stabz(Γ)|
+

∑
P∈Cusps(Γ)

vP (f) =
k[PSL2(Z) : Γ]

12
,

so by setting Ak := k[PSL2(Z):Γ]
12 , we have

∑
z∈Γ\H vz(f) ≤ Ak.

i) Prove that dimMk(Γ) ≤ Ak + 1.
Solution:
Let z0 ∈ C. With Ak as in the solution of the previous exercise, consider the linear
map Mk(Γ) → CAk+1, mapping f to the coefficients (f(z0), f

′(z0), ....., f
(Ak)(z0)).

We claim that this map is injective. Let f and g be modular forms of weight k and
level Γ, such that their q-expansions agree up to degree ⌊Ak⌋. We will show that
then f = g. Note that then

v∞(f − g) ≥ 1 + ⌊Ak⌋ > Ak.

This yields a contradiction to the valence formula (stated in part h)), unless f−g =
0. This proves the injectivity of the map. Hence dimMk(Γ) ≤ Ak + 1.

3. Let k ≥ 2 be an even integer. Recall that the Bessel function Jk is defined for z ∈ C by

Jk(z) =
∑
n≥0

(−1)n

n!(n+ k)!

(z
2

)k+2n
.

a) Prove that for all z ∈ C, we have

Jk(z) =
1

2π

∫ 2π

0
eiz sin(ϑ)−ikϑdϑ,

and deduce that |Jn(x)| ≤ 1 for all x ∈ R.
Solution:
We start by writing out the power series expansion for the exponential eiz sin(ϑ)

explicitly, followed by writing out the binomial expansion of sin(ϑ) = eiϑ−e−iϑ

2i as
follows



1

2π

∫ 2π

0
eiz sin(ϑ)−ikϑdϑ =

1

2π

∫ 2π

0
e−ikϑ

∞∑
n=0

1

n!
(iz)n sin(ϑ)ndϑ

=
∞∑
n=0

1

n!
(iz)n

1

2π

∫ 2π

0
e−ikϑ sin(ϑ)ndϑ

=
∞∑
n=0

1

n!
(iz)n

1

2π

∫ 2π

0
e−ikϑ

(
eiϑ − e−iϑ

2i

)n

dϑ

=

∞∑
n=0

1

n!

(z
2

)n 1

2π

∫ 2π

0
e−ikϑ

n∑
l=0

(
n

l

)
(−1)leiϑ(n−l)e−iϑldϑ

=

∞∑
n=0

1

n!

(z
2

)n n∑
l=0

(
n

l

)
(−1)l

1

2π

∫ 2π

0
e−ikϑeiϑ(n−l)e−iϑldϑ

=

∞∑
n=0

(z
2

)n n∑
l=0

1

l!(n− l)!
(−1)l

1

2π

∫ 2π

0
e−ikϑ+iϑ(n−l)−iϑldϑ

For any integer a the integral
∫ 2π
0 eiaϑdϑ is non-zero if and only if a = 0. Hence

only for n = k + 2l the integral above will be non-zero. Moreover

1

2π

∫ 2π

0
dϑ = 1.

Thus
∞∑
n=0

(z
2

)n n∑
l=0

1

l!(n− l)!
(−1)l

1

2π

∫ 2π

0
e−ikϑ+iϑ(n−l)−iϑldϑ =

∞∑
l=0

(z
2

)k+2l 1

l!(k + 2l − l)!
(−1)l

Let x ∈ R. Then |Jn(x)| ≤ 1 follows from the inequality

|Jk(x)| ≤
1

2π

∫ 2π

0
|ei(x sin(ϑ)−kϑ)|dϑ

=
1

2π

∫ 2π

0
| cos(x sin(ϑ)− kϑ) + i sin(x sin(ϑ)− kϑ)|dϑ

= 1

b) Prove that the function f(z) = Jn(z) satisfies the differential equation

z2f ′′(z) + zf ′(z) + (z2 − n2)f(z) = 0.

Solution:
Taking the derivative of Jn(z):

J ′
n(z) =

∞∑
k=0

(−1)k

2k! (n+ k)!
· (2k + n)

(z
2

)2k+n−1



Multiplying by z, we obtain:

zJ ′
n(z) =

∞∑
k=0

(−1)k

k! (n+ k)!
· (2k + n)

(z
2

)2k+n

Taking the derivative again:

J ′′
n(z) =

∞∑
k=0

(−1)k

4k! (n+ k)!
· (2k + n)(2k + n− 1)

(z
2

)2k+n−2

Multiplying by z2, we get:

z2J ′′
n(z) =

∞∑
k=0

(−1)k

k! (n+ k)!
· (2k + n)(2k + n− 1)

(z
2

)2k+n

Then

z2J ′′
n(z) + zJ ′

n − n2Jn =
∞∑
k=0

(−1)k

k! (n+ k)!

(z
2

)2k+n
· 4k(k + n).

On the other hand

z2Jn(z) =
∞∑
k=0

(−1)k

k! (n+ k)!

(z
2

)2(k+1)+n
· 4

=
∞∑
k=0

(−1)k+1

(k + 1)! (n+ k + 1)!

(z
2

)2(k+1)+n
· (−4(k + 1)(n+ k + 1))

=
∞∑
k=1

(−1)k

(k)! (n+ k)!

(z
2

)2k+n
· (−4k(n+ k))

Hence we are only left with the 0-term in the sum over k:

z2J ′′
n(z) + zJ ′

n(z) + (z2 − n2)Jn(z) =
1

n!

(z
2

)n
· 4 · 0 · n = 0.

Thus, the Bessel function satisfies the differential equation.

4. Let p be a prime number. Recall that the Kloosterman sum S(m,n; p) is defined by

S(m,n; p) =
∑
x∈F×

p

e
(mx+ nx̄

p

)
, xx̄ ≡ 1 mod p.



a) Show that S(m,n; p) ∈ R.
Solution:
We have to show that S(m,n; p) doesn’t change under complex-conjugation. Note
that

S(m,n; p) =
∑
x∈F×

p

e
(m(−x) + n(−x̄)

p

)
=
∑
x∈F×

p

e
(m(−x) + n(−x)

p

)
, as (−x)(−x) ≡ (−x)(−x̄) ≡ 1 (mod p)

=
∑

−x∈F×
p

e
(mx+ nx̄

p

)
= S(m,n; p).

b) Show that ∑
m,n∈Fp

|S(m,n; p)|4 = p2N(p)

where N(p) is the number of solutions (a, b, c, d) ∈ (F×
p )

4 of the equations{
a+ b = c+ d

a−1 + b−1 = c−1 + d−1.

Solution:
For h an integer we will use the formula

1

p

∑
m∈Fp

e

(
mh

p

)
= δ0,h =

{
1, h = 0

0, else.
(1)

We compute the fourth power:∑
m,n∈Fp

|S(m,n; p)|4 =
∑

m,n∈Fp

∑
a,b,c,d∈(Fp)×

e

(
m(a+ b− c− d)

p

)
e

(
n(a−1 + b−1 − c−1 − d−1)

p

)

=
∑

a,b,c,d∈(Fp)×

 ∑
m∈Fp

e

(
m(a+ b− c− d)

p

)∑
n∈Fp

e

(
n(a−1 + b−1 − c−1 − d−1)

p

)
= p2

∑
(a,b,c,d)∈((Fp)×)4

a+b=c+d
a−1+b−1=c−1+d−1

1 = p2N(p),

where when going from the second to the third row we used the formula (1).

c) For (m0, n0) ∈ (F×
p )

2, prove that

(p− 1)|S(m0, n0; p)|4 ≤
∑

m,n∈Fp

|S(m,n; p)|4.



Solution:
Let a,m0, n0 ∈ F×

p be arbitrary. Then

S(am0, a
−1n0; p) =

∑
x∈F×

p

e
(m0ax+ n0a

−1x̄

p

)
, xx̄ ≡ 1 mod p

=
∑

ax∈F×
p

e
(m0ax+ n0ax

p

)
= S(m0, n0; p).

Let m̃ ∈ F×
p be such that |S(m̃, n; p)| is minimal under all |S(m,n; p)|, for m ∈ F×

p .
Let a ∈ F×

p be such that am̃ = m0. Then∑
m,n∈Fp

|S(m,n; p)|4 ≥
∑
n∈Fp

∑
m∈F×

p

|S(m̃, n; p)|4

=
∑
n∈Fp

(p− 1)|S(m̃, n; p)|4

=
∑
n∈Fp

(p− 1)|S(am̃, a−1n; p)|4

=
∑
n∈Fp

(p− 1)|S(m0, a
−1n; p)|4

≥ (p− 1)|S(m0, n0; p)|4.

d) Deduce that for (m0, n0) ∈ (F×
p )

2, we have

S(m0, n0; p) = O(p3/4).

Solution:
Let m0, n0 ∈ F×

p be arbitrary.
It suffices to prove that N(p) = O(p2), since then by part b) we obtain∑

m,n∈Fp

|S(m,n; p)|4 = p2N(p) = O(p4).

Then from part c) it follows that

|S(m0, n0; p)|4 = O(p3),

so that S(m0, n0; p) = O(p3/4).
Now we will prove N(p) = O(p2). First fix values a, b ∈ F×

p with a + b ̸= 0. If
(c, d) ∈ (F×

p )
2 satisfy

a+ b = c+ d (2)

a−1 + b−1 = c−1 + d−1, (3)



then the value of c+ d is fixed and a−1 + b−1 ̸= 0. Hence

cd =
c+ d

a−1 + b−1
∈ F×

p

is fixed. Since we know both c + d and cd, there are at most 2 pairs (c, d) that
satisfy (2) and (3). Hence the number of choices for a, b, c, d in this case is bounded
by a constant times p2.
If a+ b = 0, then c+ d = 0, so that the solution is determined by (a, c), which in
total leves us with p2 choices. Taking both cases into account, we obtain our claim.


