Number Theory II

D-MATH Prof. Dr. Emmanuel Kowalski

Solutions: Exercise Sheet 6

- 1. Let $k \ge 4$ be an even integer and let $f \in \mathcal{H}_k$ be a Hecke eigenform (i.e., an element of the Hecke basis of $S_k(1)$). Let $\lambda_f(n)$ denote the eigenvalue for the *n*-th Hecke operator. Let $\delta \ge 0$ be a real number such that $\lambda_f(n) = O(n^{\delta})$ for $n \ge 1$.
 - a) For any prime number p, prove that the power series

$$\sum_{\nu \ge 0} \lambda(p^{\nu}) X^{\nu}$$

has radius of convergence $\geq p^{-\delta}$.

Solution:

Since $\lambda_f(p^{\nu}) = O(p^{\delta\nu})$, for all positive integers $\nu \geq 0$, there exists a positive constant $C \geq 1$ such that $|\lambda_f(p^{\nu})| \leq C \cdot p^{\lambda\nu}$. Then we have the following inequality for the radius of convergence r

$$r = \frac{1}{\limsup_{\lambda \to \infty} \sqrt[\nu]{|\lambda_f(p^\nu)|}} \ge \frac{1}{\limsup_{\lambda \to \infty} \sqrt[\nu]{Cp^{\delta\nu}}} \ge p^{-\delta}$$

b) Deduce that $|\lambda_f(n)| \le d(n)n^{\delta}$ for all $n \ge 1$ (here d is the divisor function). Solution:

Recall from the lectures that for each $\nu \geq 0$ we can write

$$\lambda_f(p^{\nu}) = \sum_{j=0}^{\nu} \alpha_p^j \beta_p^{\nu-j},$$

where $\alpha_p = e^{i\vartheta_p}$, $\beta_p = e^{-i\vartheta_p}$, for some complex number ϑ_p . First we will show that $|\alpha_p| = |\beta_p^{-1}| = p^{-\delta}$. Assume $|\alpha_p| \neq p^{-\delta}$. Then we can assume without loss of generality that α_p is such that $|\alpha_p| < p^{-\delta}$, so that $|\beta_p| > p^{\delta}$. Taking $X = \alpha_p$, we can write

$$\lambda_f(p^{\nu})X^{\nu} = \alpha_p^{\nu} \sum_{j=0}^{\nu} \alpha_p^j \beta_p^{\nu-j}$$
$$= \sum_{j=0}^{\nu} \alpha_p^j \beta_p^{-j},$$

since $\alpha_p \beta_p = \alpha_p^{\nu} \beta_p^{\nu} = 1$. Further write

$$\sum_{j=0}^{\nu} \alpha_p^j \beta_p^{-j} = \sum_{j=0}^{\nu} \beta_p^{-2j}$$
$$= \frac{1 - \beta_p^{-(2\nu+2)}}{1 - \beta_p^{-2}},$$

which converges to 1 as $\nu \to +\infty$ (since $|\beta_p| > p^{\delta}$). But then $\sum_{\nu \ge 0} \lambda_f(p^{\nu}) X^{\nu}$ diverges, which is a contradiction to this power series having radius of convergence equal to $p^{-\delta}$ by part a). Hence $|\alpha_p| = |\beta_p^{-1}| = p^{-\delta}$. Then

$$|\lambda_f(p^{\nu})| = \left|\sum_{j=0}^{\nu} \alpha_p^j \beta_p^{\nu-j}\right| \le \sum_{j=0}^{\nu} |\alpha_p|^j |\beta_p|^{\nu-j} = \sum_{j=0}^{\nu} p^{-\delta j} p^{\delta \nu - \delta j} = p^{\delta \nu} (\nu+1) = p^{\delta \nu} d(p^{\nu}).$$

By multiplicativity we have $|\lambda_f(n)| \le n^{\delta} d(n)$ for all $n \ge 1$.

- c) Deduce that the following statements are equivalent:
 - (i) For all cusp forms $g \in S_k(1)$, the Fourier coefficients $a_g(n)$ of g satisfy the estimate $a_g(n) = O(n^{(k-1)/2+\varepsilon})$ for all $\varepsilon > 0$.
 - (ii) For all $f \in \mathcal{H}_k$ and for all $n \ge 1$, we have $|\lambda_f(n)| \le d(n)n^{(k-1)/2}$. Solution:
 - $''(i) \implies (ii)''$ Let $f \in \mathcal{H}_k$ be a Hecke eigenform. Then $f \in S_k(1)$ as well, so by part (i) we have for all $\varepsilon > 0$ that

$$|\lambda_f(n)| = |a_f(n)| = O(n^{(k-1)/2+\varepsilon}),$$

so by part b) it follows that $|\lambda_f(n)| \leq d(n)n^{(k-1)/2}$.

 $''(ii) \implies (i)''$ Let $g = \sum_m a_g(m)q^m \in S_k(1)$ be a cusp form. From the lectures we know that there exist Hecke eigenforms $\{f_i\}_i \in \mathcal{H}_k$ such that

$$g = \sum_i b_i f_i$$

Then writing for each *i* the Fourier expansion $f_i = \sum_n a_i(n)q^n$, note that

$$a_g(m) = \sum_i b_i a_i(m)$$

Moreover, since each $a_i(m)$ has a corresponding Hecke eigenvalue $\lambda_i(m)$, we obtain by part (ii)

$$|a_g(m)| \le \sum_i |b_i| |\lambda_i(m)| \le \sum_i |b_i| d(m) m^{(k-1)/2} = O(m^{(k-1)/2+\varepsilon}),$$

since $d(m) = o(m^{\varepsilon})$, for each $\varepsilon > 0$.

- **2.** Let $q \ge 1$ be an integer.
 - a) Let χ be a Dirichlet character modulo q. For any integer $d \ge 1$, show that the function $\tilde{\chi}$ defined on integers by

$$\widetilde{\chi}(n) = \begin{cases} \chi(n) & \text{if } (n, qd) = 1\\ 0 & \text{otherwise,} \end{cases}$$

for $n \in \mathbb{Z}$ is a Dirichlet character modulo qd. It is said to be *induced* by χ . ¹Solution:

Let $a, b \in \mathbb{Z}$ be arbitrary. First we will show that $\tilde{\chi}$ is multiplicative. By definition, we have that $\tilde{\chi}(ab)$ is non-zero if and only if ab is coprime to qd, which holds if and only if both a and b are coprime to qd. If that is the case, then we have

$$\tilde{\chi}(ab) = \chi(ab) = \chi(a)\chi(b) = \tilde{\chi}(a)\tilde{\chi}(b).$$

Hence $\tilde{\chi}$ is multiplicative. We are left to show that $\tilde{\chi}$ has period qd. Let $a, n \in \mathbb{Z}$ be arbitrary integers. Since (a + nqd, qd) = 1 if and only if (a, qd) = 1, together with the fact that $\chi(a + nqd) = \chi(a)$, we have that $\tilde{\chi}(a + nqd) = \tilde{\chi}(a)$.

b) Compute $L(s, \tilde{\chi})$ in terms of $L(s, \chi)$. Solution:

By definition, we have

$$L(s,\tilde{\chi}) = \sum_{n\geq 1} \frac{\tilde{\chi}(n)}{n^s} = \sum_{\substack{n\geq 1\\(n,dq)=1}} \frac{\chi(n)}{n^s}$$
$$= \sum_{\substack{n\geq 1\\(n,d)=1}} \frac{\chi(n)}{n^s}$$

since χ is a Dirichlet character modulo q, we have $\chi(n) = 0$ if $(n,q) \neq 1$. The above can then be rewritten to

$$\sum_{\substack{n \ge 1\\(n,d)=1}} \frac{\chi(n)}{n^s} = \sum_{n \ge 1} \frac{\chi(n)\mathbf{1}_{(n,d)=1}}{n^s} = \prod_{p \nmid d} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}$$
$$= \prod_p \left(1 - \frac{\chi(p)}{p^s}\right)^{-1} \prod_{p \mid d} \left(1 - \frac{\chi(p)}{p^s}\right)$$
$$= L(s,\chi) \prod_{p \mid d} \left(1 - \frac{\chi(p)}{p^s}\right).$$

A Dirichlet character modulo q is said to be *primitive* if there does not exist a divisor $d \mid q$ with d < q and a Dirichlet character η modulo d such that χ is induced by η .

¹ Warning: this is not the standard meaning of the word "induce" in representation theory.

c) Explain why the primitive characters modulo a *prime* q are the non-trivial characters modulo q.

Solution:

Since q is prime, the only divisor $d \mid q$ with d < q is d = 1. The only Dirichlet character η modulo 1 is the constant character, i.e. for all $n \in \mathbb{Z}$ we have $\eta(n) = 1$. This induces only one character modulo q, $\tilde{\eta}$, which is $\tilde{\eta}(n) = 1$ if (n, q) = 1, and $\tilde{\eta}(n) = 0$ otherwise (hence the trivial character modulo q).

d) Show that if χ is any Dirichlet character modulo q, there exists a unique divisor $d \mid q$ (possibly equal to q) and primitive Dirichlet character η modulo d such that χ is induced from η . (Hint: to prove uniqueness, show that if χ is induced from characters η_1 modulo d_1 and η_2 modulo d_2 , then it is induced from a character modulo the greatest common divisor $gcd(d_1, d_2)$.) Solution:

Let χ be a Dirichlet character modulo q.

First we will show existence of such a character. If χ is primitive, we can choose d = q and $\eta = \chi$. So we claim that χ is not primitive. Consider the set D of all divisors $d \mid q$ for which χ is induced by some Dirichlet character η modulo d. Note that this set is not empty, since $q \in D$.

Let $d' \in D$ be minimal such that for all $d \in D$ we have $d \ge d'$ and χ is induced by some Dirichlet character η' modulo d'. We claim that η' is primitive. If it was not primitive, then there exists a divisor r' < d' of d' and a Dirichlet character γ modulo r' such that for all $n \in \mathbb{Z}$ we have

$$\eta'(n) = \begin{cases} \gamma(n) & (n, d') = 1\\ 0 & \text{otherwise} \end{cases}$$

But then

$$\chi(n) = \begin{cases} \eta'(n) & (n,q) = 1\\ 0 & \text{otherwise} \end{cases}$$

Combining this with the formula for η' we stated above, we obtain that

$$\chi(n) \begin{cases} \gamma(n) & (n,q) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Hence the character χ is induced by γ , which is a character modulo r' < d', which is a contradiction to the minimality of d'. Hence η' is primitive.

Next we will show uniqueness. Suppose that χ is induced from primitive characters η_1 modulo d_1 and η_2 modulo d_2 . Then for all (n, q) = 1 we have $\chi(n) = \eta_1(n) = \eta_2(n)$. Let $d := \gcd(d_1, d_2)$. Composing the character η_i with the reduction modulo d homomorphism, we get that η_i is induced by a Dirichlet character modulo d. Since both η_1 and η_2 are primitive, we get that $d = d_1 = d_2$.

Hence we are left to show that for every $n \in \mathbf{Z}$ we have $\eta_1(n) = \eta_2(n)$. Let $n \in \mathbf{Z}$ be arbitrary such that (n, d) = 1, and let $m \in \mathbf{Z}$ be an integer such that (n + md, q) = 1. Then

$$\eta_1(n) = \eta_1(n+md) = \chi(n+md) = \eta_2(n+md) = \eta_2(n)$$

e) Let $\varphi^*(q)$ denote the number of primitive characters modulo q. Show that

$$\varphi(q) = \sum_{d|q} \varphi^*(d)$$

and

$$\varphi^*(q) = \sum_{d|q} \mu(d)\varphi(q/d).$$

Solution:

By part d) we know that $\varphi(q)$ is given by the number of Dirichlet characters modulo q, which in turn, is equal to the number of Dirichlet characters modulo q, which are induced by a primitive Dirichlet character modulo d, for all divisors $d \mid q$. In other words,

$$\varphi(q) = \sum_{d|q} \varphi^*(d). \tag{1}$$

The second equation in the statement of the exercise is given by taking Möbius inversion of (1).

f) Determine the integers for which $\varphi^*(q) = 0$. Solution:

By part e) together with the fact that both μ and φ are multiplicative, we obtain that φ^* is multiplicative:

$$\varphi^*(q) = \prod_{p|q} \varphi^*(p^{v_p(q)}).$$

For a prime number p we have (using the formula from part e)) $\varphi^*(p) = \mu(1)\varphi(p) + \mu(p)\varphi(1) = p - 1 - 1 = p - 2$. Moreover

$$\begin{split} \varphi^*(p^v) &= \sum_{n=0}^v \mu(p^n) \varphi(p^{v-n}) \\ &= \mu(1) \varphi(p^v) + \mu(p) \varphi(p^{v-1}) \\ &= \left(1 - \frac{1}{p}\right) p^v - \left(1 - \frac{1}{p}\right) p^{v-1} = p^{v-2} (p-1)^2 \end{split}$$

Hence we obtain the formula

$$\varphi^*(q) = \left(\prod_{v_p(q)=1} (p-2)\right) \left(\prod_{v_p(q)=2} p^{v_p(q)-2} (p-1)^2\right)$$
$$= q \prod_{p||q} \left(1 - \frac{2}{p}\right) \prod_{p^2|q} \left(1 - \frac{1}{p}\right)^2$$

where the products are taken over all primes p with the stated conditions underneath the respective product symbols. Hence $\varphi^*(q) = 0$ if and only if $v_2(q) = 1$. g) Let χ be a primitive Dirichlet character modulo q. Define

$$\tau(\chi) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{x}{q}\right).$$

Show that $\overline{\chi}$ is also primitive, and prove that for any integer *a* coprime to *q*, the formula

$$\tau(\overline{\chi})\chi(a) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \overline{\chi}(x) e\left(\frac{ax}{q}\right)$$

holds.

Solution:

Let χ be a primitive Dirichlet character modulo q. Then we have that χ is induced by a Dirichlet character η modulo $d \mid q$ if and only if $\overline{\chi}$ is induced by a Dirichlet character $\overline{\eta}$ modulo $d \mid q$. From this equivalence it follows that $\overline{\chi}$ is primitive as well.

Similar to Exercise 2b) from Exercise sheet 4, we obtain

$$\tau(\overline{\chi})\chi(a) = \sum_{z \in \mathbf{Z}/q\mathbf{Z}} \chi(a)\overline{\chi}(x)e\left(\frac{x}{q}\right)$$
$$= \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \overline{\chi}(xa^{-1})e\left(\frac{x}{q}\right)$$
$$= \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \overline{\chi}(x)e\left(\frac{ax}{q}\right)$$

h) Let χ be a primitive Dirichlet character modulo q. Let a be an integer such that $d = (a, q) \ge 2$. Let q' be defined by q = dq'. Prove that for any x' modulo q', we have

$$\sum_{\substack{x\in \mathbf{Z}/q\mathbf{Z}\\x\equiv x' \bmod q'}} \chi(x) = 0$$

(Hint: here, you have to use the fact that χ is primitive.) Deduce that

$$\sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right) = 0.$$

Solution:

Let χ, q and q' be as above. We claim that there exists $y \in \mathbf{Z}$ such that $y \equiv 1 \pmod{q'}$ with $\chi(y) \neq 1$. If not, then we would have for every $y \in \mathbf{Z}$ with $y \equiv 1 \pmod{q'}$ that $\chi(y) = 1$. This in turn means that χ is induced by a character modulo q'. More precisely, let $n \in \mathbf{Z}$ be such that (n,q) = 1. Let $m \in \mathbf{Z}$ be arbitrary. Then there exists an inverse $n^{-1} \in \mathbf{Z}/q\mathbf{Z}$ such that $nn^{-1} = 1 + ql$, for some $l \in \mathbf{Z}$. Hence

$$\chi(n+q') = \chi((1+q'n^{-1})n) = \chi(1+q'n^{-1})\chi(n) = \chi(n).$$

Note that since $\chi(n) \neq 0$, we also have $\chi(n+q') \neq 0$, so (n+q',q) = 1. By induction we obtain that $\chi(n+mq') = \chi(n)$, so χ indeed factors through $\mathbf{Z}/q'\mathbf{Z}$, which is a contradiction to χ being primitive. Hence we obtain our claim, and we can choose $y \in \mathbf{Z}$ such that $y \equiv 1 \pmod{q'}$ with $\chi(y) \neq 1$. Then

$$\sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \mod q'}} \chi(x) = \sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \mod q'}} \chi(yx) = \chi(y) \sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \mod q'}} \chi(x),$$

and since $\chi(y) \neq 1$, we must have $\sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \bmod q'}} \chi(x) = 0.$

Next we will consider the second sum in the exercise. Write

$$\sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right) = \sum_{x' \in \mathbf{Z}/q'\mathbf{Z}} \sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \pmod{q'}}} \chi(x) e\left(\frac{ax}{q}\right)$$

Write a = a'd and note that

$$e\left(\frac{ax}{q}\right) = e\left(\frac{a'x'}{q'}\right)e(a'n) = e\left(\frac{a'x'}{q'}\right),$$

for $n \in \mathbf{Z}$ such that x = x' + nq'. Hence

$$\sum_{\substack{x' \in \mathbf{Z}/q'\mathbf{Z} \\ x \equiv x' \pmod{q'}}} \sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \pmod{q'}}} \chi(x) e\left(\frac{ax}{q}\right) = \sum_{\substack{x' \in \mathbf{Z}/q'\mathbf{Z} \\ q' \neq \mathbf{Z}}} e\left(\frac{a'x'}{q'}\right) \sum_{\substack{x \in \mathbf{Z}/q\mathbf{Z} \\ x \equiv x' \pmod{q'}}} \chi(x) = 0.$$

i) Conclude that if χ is a primitive Dirichlet character modulo q, then $\tau(\chi)$ and $\tau(\overline{\chi})$ are non-zero, and the formula

$$\chi(a) = \frac{1}{\tau(\overline{\chi})} \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right)$$

holds for all integers $a \in \mathbb{Z}$. (This fact is very often the key property of primitive characters.)

Solution:

Let χ be a primitive Dirichlet character modulo q. Then $\overline{\chi}$ is primitive as well. Moreover, χ is not the trivial character modulo q, so by Exercise 2 of Exercise Sheet 4, we have that $|\tau(\chi)| = |\tau(\overline{\chi})| = \sqrt{q} \neq 0$. By part g) and h) we have for (a,q) = 1 that

$$\frac{1}{\tau(\overline{\chi})} \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right) = \chi(a),$$

while for (a,q) > 1

$$\frac{1}{\tau(\overline{\chi})} \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right) = 0 = \chi(a).$$

Hence we obtain the formula in the exercise.