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1. Use Selberg’s sieve to show that for any positive integer m,
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2. The prime number theorem in arithmetic progressions states that for fixed ¢ and for
fixed @ mod ¢ with (a,q) =1,
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say. Consider the sieve problem for sums of two squares, where for p =3 mod 4,
A, ={n <z :p¥||n for k odd}.

Using the prime number theorem in arithmetic progressions, show that the dimension
of this sieve problem is %, i.e. that

1 1
E szlogzﬁ-O(l)
P 2

p<z
p=3 mod 4

3. The goal of this exercise is to prove Romanoff’s theorem, which states that a positive
proportion of positive integers n can be expressed as n = p + 2¥ where p is prime and
k is a non-negative integer. (Note: this is a long exercise! Doing every part is of course
optional.)

(a) Let
r(n) :=#{(p,k) : k>1,n=p+ Zk},

and let B(z) denote the number of n < z such that such a decomposition exists,
i.e. the number of n < x such that r(n) > 1. Show that
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(Hint: Use Cauchy-Schwarz).



(b)

Show that
Z r(n) > x
n<x
and that
D r(n)? < A= #{(p1,pa, b ko) s pi < 2,28 <apy 4+ 28 = py 4272}
n<x

Conclude that B(z) > %
Apply the first problem with 2m = 21 — 22 to show that
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Defining ¢ = k1 — ko and noting that there are O(log x) pairs k1, ko with k1 —ke = ¢,
show that
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Let s(d) denote the order of d modulo 2. Show that
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The next few parts will show that the sum over d converges when extended to all
odd positive integers. Show that s(d) > logd, and use this to show that for all
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is finite. Conclude that
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(g) Define Nj, := [];4(2" — 1). Show that if s(d) < k, then d|N*, and that Nj < 2¥°.
Conclude that
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(h) Combining the results of the previous parts, show that

converges to a constant. Conclude that A < x and that B(z) > x, as desired.



