Extra Exercise Sheet

Exercise 1 (Invariant bilinear forms). Let $k = \mathbb{R}$, or \mathbb{C} . Let V be a finite-dimensional vector space over k, let $f: V \times V \to k$ be a bilinear form and let $G \leq GL(V)$ be a Lie subgroup with Lie algebra $\mathfrak{g} \leq \mathfrak{gl}(V) = End(V)$.

We say that $f: V \times V \to k$ is *G*-invariant if

$$f(g \cdot v, g \cdot w) = f(v, w)$$

for all $g \in G, v, w \in V$. We say that $f: V \times V \to k$ is g-invariant if

$$f(X \cdot v, w) = -f(v, X \cdot w)$$

for all $X \in \mathfrak{g} \leq \operatorname{End}(V), v, w \in V$.

- 1) Assuming that $G \leq \operatorname{GL}(V)$ is connected show that f is G-invariant if and only if f is g-invariant.
- 2) Let \mathfrak{g} be a Lie algebra over k, let $\rho : \mathfrak{g} \to \mathfrak{gl}(n,k)$ be a representation and consider the corresponding trace form $B_{\rho}(X,Y) = \operatorname{tr}(\rho(X)\rho(Y))$ of ρ . Show that B_{ρ} is $\operatorname{ad}(\mathfrak{g})$ -invariant.

Exercise 2 (Killing form of $\mathfrak{sl}(2,\mathbb{R})$). Choose a basis of $\mathfrak{sl}(2,\mathbb{R})$ to compute the Killing form $K_{\mathfrak{sl}(2,\mathbb{R})}(X,Y) = 4\operatorname{tr}(XY)$.

Exercise 3 (Complex Lie algebras). Let \mathfrak{g} be a real Lie algebra and $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\text{Hom}} \mathbb{C}$ the complexification of \mathfrak{g} as a vector space.

(1) Show that the bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ extends uniquely to a \mathbb{C} -bilinear map $[\cdot, \cdot]_{\mathbb{C}} : \mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \to \mathfrak{g}_{\mathbb{C}}$ turning $\mathfrak{g}_{\mathbb{C}}$ into a complex Lie algebra.

(2) Show that the canonical injection $\mathfrak{g} \to \mathfrak{g}_{\mathbb{C}}, X \mapsto X \otimes 1$ is a homomorphism of real Lie algebras and, if we identify \mathfrak{g} with its image in $\mathfrak{g}_{\mathbb{C}}$, we have that

$$\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}+i\mathfrak{g}.$$

Express the bracket of $\mathfrak{g}_{\mathbb{C}}$ in this decomposition.

- (3) Show that \mathfrak{g} is solvable if and only if $\mathfrak{g}_{\mathbb{C}}$ is solvable,
- (4) Show that \mathfrak{g} is nilpotent if and only if $\mathfrak{g}_{\mathbb{C}}$ is nilpotent.

Exercise 4 (Weight spaces and ideals). Let \mathfrak{g} be a Lie algebra, let $\mathfrak{h} \leq \mathfrak{g}$ be an ideal and let $\pi : \mathfrak{g} \to \mathfrak{gl}(V)$ a finite-dimensional complex representation. For a given linear functional $\lambda : \mathfrak{h} \to \mathbb{C}$ consider its weight space

$$V_{\lambda}^{\mathfrak{h}} \coloneqq \{ v \in V \,|\, \pi(X)v = \lambda(X)v \quad \forall X \in \mathfrak{h} \}.$$

Show that every weight space $V_{\lambda}^{\mathfrak{h}}$ is invariant under $\pi(\mathfrak{g})$, i.e. $\pi(Y)V_{\lambda}^{\mathfrak{h}} \subseteq V_{\lambda}^{\mathfrak{h}}$ for every $\lambda \in \mathfrak{h}^*, Y \in \mathfrak{g}$.

Exercise 5 (Lie's theorem for Lie algebras). Let \mathfrak{g} be a solvable Lie algebra and let $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional complex representation.

Show that $\rho(\mathfrak{g})$ stabilizes a flag $V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_n = 0$, with $\operatorname{codim} V_i = i$, i.e. $\rho(X)V_i \subseteq V_i$ for every $X \in V_i$, $i = 1, \ldots, n$.

<u>Hint:</u> Use exercise 4.