Exercise Sheet 1

Exercise 1 (Compact-Open Topology). Let X, Y, Z be a topological space, and denote by $C(Y, X) := \{f: Y \to X \text{ continuous}\}$ the set of continuous maps from Y to X. The set C(Y, X) can be endowed with the *compact-open topology*, that is generated by the subbasic sets

$$S(K,U) \coloneqq \{ f \in C(Y,X) \mid f(K) \subseteq U \},\$$

where $K \subseteq Y$ is compact and $U \subseteq X$ is open.

Prove the following useful facts about the compact-open topology.

If Y is locally compact¹, then:

- a) The evaluation map $e: C(Y, X) \times Y \to X, e(f, y) \coloneqq f(y)$, is continuous.
- b) A map $f: Y \times Z \to X$ is continuous if and only if the map

$$\hat{f}: Z \to C(Y, X), \quad \hat{f}(z)(y) = f(y, z),$$

is continuous.

- **Solution.** a) For $(f, y) \in C(Y, X) \times Y$ let $U \subset X$ be an open neighborhood of f(y). Since Y is locally compact, continuity of f implies there is a compact neighborhood $K \subset Y$ of y such that $f(K) \subset U$. Then $S(K, U) \times K$ is a neighborhood of (f, y) in $C(Y, X) \times Y$ taken to U by e, so e is continuous at (f, y).
 - b) Suppose $f: Y \times Z \to X$ is continuous. To show continuity of \hat{f} it suffices to show that for a subbasic set $S(K,U) \subset C(Y,X)$, the set $\hat{f}^{-1}(S(K,U)) = \{z \in Z \mid f(K,z) \subset U\}$ is open in Z. Let $z \in \hat{f}^{-1}(S(K,U))$. Since $f^{-1}(U)$ is an open neighborhood of the compact set $K \times \{z\}$, there exist open sets $V \subset Y$ and $W \subset Z$ whose product $V \times W$ satisfies $K \times \{z\} \subset V \times W \subset f^{-1}(U)$. Indeed, $f^{-1}(U) = \bigcup_{i \in I} V_i \times W_i$ and we can choose a finite family $I' \subset I$ with $K \times \{z\} \subset \bigcup_{i \in I'} V_i \times W_i$. Then set $W := \bigcap_{z \in W_i} W_i$ and $V := \bigcup_{z \in W_i} V_i$.

So W is a neighborhood of z in $\hat{f}^{-1}(S(K, U))$. (The hypothesis that Y is locally compact is not needed here.)

For the converse of b) note that f is the composition $Y \times Z \to Y \times C(Y, X) \to X$ of $\mathrm{Id} \times \hat{f}$ and the evaluation map, so part a) gives the result.

Exercise 2 (General Linear Group $GL(n, \mathbb{R})$). The general linear group

$$\mathrm{GL}(n,\mathbb{R}) \coloneqq \{A \in \mathbb{R}^{n \times n} \,|\, \mathrm{det}A \neq 0\} \subseteq \mathbb{R}^{n \times n}$$

is naturally endowed with the subspace topology of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$. However, it can also be seen as a subset of the space of homeomorphisms of \mathbb{R}^n via the injection

$$j: \operatorname{GL}(n, \mathbb{R}) \to \operatorname{Homeo}(\mathbb{R}^n),$$

 $A \mapsto (x \mapsto Ax).$

¹A subset $C \subseteq Y$ that contains an open subset $U \subseteq Y$ with $y \in U \subseteq C \subseteq Y$ is called a *neighborhood of* $y \in Y$. Then Y is called *locally compact* if for every $y \in Y$ there is a set \mathcal{D} of compact neighborhoods of y such that every neighborhood of y contains an element of \mathcal{D} as a subset.

a) Show that $j(\operatorname{GL}(n,\mathbb{R})) \subset \operatorname{Homeo}(\mathbb{R}^n)$ is a closed subset, where $\operatorname{Homeo}(\mathbb{R}^n) \subset C(\mathbb{R}^n,\mathbb{R}^n)$ is endowed with the compact-open topology.

Solution. Note that

$$j(\mathrm{GL}(n,\mathbb{R})) = \{ f \in \mathrm{Homeo}(\mathbb{R}^n) : f(\lambda x + y) = \lambda f(x) + f(y) \text{ for all } \lambda \in \mathbb{R}, x, y \in \mathbb{R}^n \} \}$$

Since evaluation is continuous also the maps

$$F_{\lambda,x,y} : \operatorname{Homeo}(\mathbb{R}^n) \to \mathbb{R}^n$$
$$f \mapsto f(\lambda x + y) - \lambda f(x) - f(y)$$

are continuous for all $\lambda \in \mathbb{R}, x, y \in \mathbb{R}^n$.

Thus,

$$j(\operatorname{GL}(n,\mathbb{R})) = \bigcap_{\lambda \in \mathbb{R}, x, y \in X} F_{\lambda,x,y}^{-1}(0) \subset \operatorname{Homeo}(\mathbb{R}^n)$$

is closed as the intersection of closed sets.

b) If we identify $GL(n, \mathbb{R})$ with its image $j(GL(n, \mathbb{R})) \subset Homeo(\mathbb{R}^n)$ we can endow it with the induced subspace topology. Show that this topology coincides with the usual topology coming from the inclusion $GL(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$.

<u>Hint:</u> Exercise 1 can be useful here.

Solution. Consider the inclusions

$$i: \mathrm{GL}(n, \mathbb{R}) \to \mathbb{R}^{n \times n},$$
$$A \mapsto \begin{pmatrix} | & | \\ A\mathbf{e}_1 & \cdots & A\mathbf{e}_n \\ | & | \end{pmatrix},$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_n$ denotes the standard basis of $\mathbb{R}^{n \times n}$.

Further, consider the maps

$$\varphi : \mathbb{R}^{n \times n} \to C(\mathbb{R}^n, \mathbb{R}^n),$$

$$\begin{pmatrix} | & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & | \end{pmatrix} \mapsto (\mathbf{x} \mapsto x_1 \cdot \mathbf{v}_1 + \cdots + x_n \cdot \mathbf{v}_n),$$

and

$$\psi: C(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R}^{n \times n},$$
$$f \mapsto \begin{pmatrix} | & | \\ f(\mathbf{e}_1) & \cdots & f(\mathbf{e}_n) \\ | & | \end{pmatrix}.$$

It is easy to verify that these form the following commutative diagram.

Since both topologies under consideration on $\operatorname{GL}(n,\mathbb{R})$ come from pulling back the topologies of $\mathbb{R}^{n\times n}$ resp. $C(\mathbb{R}^n,\mathbb{R}^n)$ via *i* resp. *j* they will coincide if we can show that the maps φ and ψ are continuous².

 $j = \varphi \circ i : (\operatorname{GL}(n, \mathbb{R}), \tau_i) \to C(\mathbb{R}^n, \mathbb{R}^n)$

is continuous, thus $\tau_j \subset \tau_i$. Analogously, if ψ is continuous, then $\tau_i \subset \tau_j$ and so the two topologies coincide.

²Let τ_i, τ_j denote the topologies, so that τ_i is the smallest topology on $GL(n, \mathbb{R})$ such that *i* is continuous and τ_j is the smallest such that *j* is continuous. If φ is continuous, then

The map ψ is continuous because it is the product of the evaluation maps

$$\operatorname{ev}_{\mathbf{e}_i} : C(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R}^n, \operatorname{ev}_{\mathbf{e}_i}(f) = f(\mathbf{e}_i)$$

 $(i=1,\ldots,n).$

Further, observe that the map

$$\operatorname{ev} \circ (\varphi \times \operatorname{Id}) : \mathbb{R}^{n \times n} \times \mathbb{R}^n \to \mathbb{R}^n, (A, x) \mapsto Ax$$

is continuous. This implies that φ is continuous.

- **Exercise 3** (O(p,q)). We consider the orthogonal group O(p,q) of signature $p,q \ge 1$.
 - a) Show that the connected component of the group O(1,1) containing the identity is homeomorphic to \mathbb{R} .
 - b) Show that for all $p, q \ge 1$, O(p, q) has a subgroup isomorphic to \mathbb{R} .

Solution. a) We recall that

$$\mathcal{O}(1,1) = \left\{ g \in \mathrm{GL}(2,\mathbb{R}) \colon {}^{\mathrm{t}}g \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} g = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \right\}.$$

Now if

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}(1,1),$$

we obtain the conditions $a^2 - c^2 = 1$, $d^2 - b^2 = 1$ and ab = cd. Rephrasing a = cd/b and b = cd/a we obtain

$$\left(\frac{cd}{b}\right)^2 - c^2 = 1 \quad \text{and} \quad d^2 - \left(\frac{cd}{a}\right)^2 = 1$$
$$\iff c^2 d^2 - c^2 b^2 = b^2 \quad \text{and} \quad a^2 d^2 - c^2 d^2 = a^2$$
$$\iff 1 = d^2 - b^2 = b^2/c^2 \quad \text{and} \quad 1 = a^2 - c^2 = a^2/d^2$$
$$\iff b^2 = c^2 \quad \text{and} \quad a^2 = d^2,$$

so $a = \pm d$ and $b = \pm c$. By ab = cd, both signs have to be the same. We obtain that

$$O(1,1) = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \operatorname{GL}(2,\mathbb{R}) \colon a^2 - b^2 = 1 \right\} \cup \left\{ \begin{pmatrix} a & b \\ -b & -a \end{pmatrix} \in \operatorname{GL}(2,\mathbb{R}) \colon a^2 - b^2 = 1 \right\}.$$

Every a, b with $a^2 - b^2 = 1$ can be written as $a = \cosh(\varphi)$ and $b = \sinh(\varphi)$ for some $\varphi \in \mathbb{R}$. The description of O(1, 1) above shows that there are two parts of O(1, 1), both of which are pathconnected, (parametrize the paths using φ). We claim that the two parts are distinct connected components:

Note that the determinant on the first part is $a^2 - b^2 = 1$ and the determinant on the second part is $-a^2 + b^2 = -1$. Since the determinant is a continuous map $O(1,1) \to \mathbb{R}$ whose image is not connected, also O(1,1) is not connected.

We note that the first component contains Id when $\varphi = 0$, so the connected component of the identity is

$$O(1,1)^{\circ} = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \operatorname{GL}(2,\mathbb{R}) \colon a^2 - b^2 = 1 \right\} = \left\{ \begin{pmatrix} \cosh(\varphi) & \sinh(\varphi) \\ \sinh(\varphi) & \cosh(\varphi) \end{pmatrix} \in \operatorname{GL}(2,\mathbb{R}) \colon \varphi \in \mathbb{R} \right\}$$

and the last description shows that it is homeomorphic to \mathbb{R} .

b) Equipped with the ideas from part a), we consider the subgroup

$$G = \{g(\varphi) \colon \varphi \in \mathbb{R}\} \quad \text{for} \quad g(\varphi) = \begin{pmatrix} \cosh(\varphi) & 0 & \cdots & \sinh(\varphi) & 0 & \cdots \\ 0 & 1 & \ddots & 0 & 0 & \ddots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots \\ \hline \sinh(\varphi) & 0 & \cdots & \cosh(\varphi) & 0 & \cdots \\ 0 & 0 & \ddots & 0 & 1 & \ddots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots \end{pmatrix}$$

Explicit calculations show that $g(\varphi) \in O(p,q)$.

Exercise 4 (Isometry Group Iso(X)). Let (X, d) be a *compact* metric space. Recall that the isometry group of X is defined as

$$\operatorname{Iso}(X) = \{ f \in \operatorname{Homeo}(X) : d(f(x), f(y)) = d(x, y) \text{ for all } x, y \in X \}.$$

Show that $Iso(X) \subset Homeo(X)$ is compact with respect to the compact-open topology.

<u>Hint:</u> Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem, see Appendix A.2 in Prof. Alessandra Iozzi's book.

Solution. The compact-open topology on Homeo(X) coincides with the topology induced by the metric of uniform convergence

$$d_{\infty}(f,g) = \sup\{d(f(x),g(x)) : x \in X\}.$$

Note that by Arzelà–Ascoli (Theorem A.1 in the lecture notes) a family $\mathcal{F} \subseteq C(X, X)$ of continuous maps is compact if and only if \mathcal{F} is equicontinuous, and \mathcal{F} is closed.

Equicontinuity of $\mathcal{F} \coloneqq \operatorname{Iso}(X)$ is clear, because we are dealing with isometries. We check that $\operatorname{Iso}(X)$ is closed.

Let $f \in C(X, X)$ and let $(f_n)_{n \in \mathbb{N}} \subset \operatorname{Iso}(X)$ be a sequence converging to it. Let $x, y \in X$ then

$$0 \le |d(f(x), f(y)) - d(x, y)|$$

= $|d(f(x), f(y)) - d(f_n(x), f_n(y))|$
 $\le |d(f(x), f(y)) - d(f_n(x), f(y))| + |d(f_n(x), f(y)) - d(f_n(x), f_n(y))|$
 $\le d(f(x), f_n(x)) + d(f(y), f_n(y)) \to 0 \quad (n \to \infty).$

Hence, f is an isometry as wished for. Because f was arbitrary this shows that $Iso(X) \subseteq C(X, X)$ is closed.

Exercise^{\dagger} 5 (Homeomorphism Group Homeo(X)).

a) Let X be a *compact* Hausdorff space. Show that $(\text{Homeo}(X), \circ)$ is a topological group when endowed with the compact-open topology.

Solution. Denote by m: Homeo $(X) \times$ Homeo $(X) \rightarrow$ Homeo(X) the composition $m(f,g) = f \circ g$ and by i: Homeo $(X) \rightarrow$ Homeo(X) the inversion $i(f) = f^{-1}$. We need to see that m and i are continuous.

i) *m* is continuous: We want to show that *m* is continuous at any tuple $(f,g) \in \text{Homeo}(X) \times \text{Homeo}(X)$. Thus let $S(K,U) \ni f \circ g$ be a subbasis neighborhood of $f \circ g$, i.e. $K \subset X$ is compact and $U \subset X$ is open such that $f(g(K)) \subset U$. Observe that g(K) is compact and is contained in $f^{-1}(U)$ which is open. Because X is (locally) compact we may find an open set $V \subset X$ with compact closure \overline{V} such that

$$g(K) \subset V \subset \overline{V} \subset f^{-1}(U).$$

It is now easy to verify that $W := S(\overline{V}, U) \times S(K, V)$ is an open neighborhood of (f, g) such that $m(W) \subset S(K, U)$. Indeed, (f, g) is by construction of V contained in W and for any $(h_1, h_2) \in W$ we get

$$h_2(K) \subset V \subset \overline{V} \subset h_1^{-1}(U).$$

Hence, m is continuous at every point of $Homeo(X) \times Homeo(X)$.

ii) i is continuous: Let $f \in \text{Homeo}(X)$, $K \subset X$ compact and $U \subset X$ open. Then

$$\begin{split} i(f) \in S(K,U) & \iff f^{-1}(K) \subset U \iff K \subset f(U) \\ & \iff f(U^c) = f(U)^c \subset K^c \iff f \in S(U^c,K^c) \end{split}$$

Observe that U^c is compact as a closed subset of the compact space X and that K^c is open as the complement of a (compact) closed set.

This shows that $i^{-1}(S(K,U)) = S(U^c, K^c)$ for every element S(K,U) of a subbasis for the compact-open topology on Homeo(X), whence *i* is continuous.

b) The objective of this exercise is to show that $(\text{Homeo}(X), \circ)$ will not necessarily be a topological group if X is only locally compact.

Consider the "middle thirds" Cantor set

$$C = \left\{ \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} : \varepsilon_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\} \subset [0, 1]$$

in the unit interval. We define the sets $U_n = C \cap [0, 3^{-n}]$ and $V_n = C \cap [1 - 3^{-n}, 1]$. Further we construct a sequence of homeomorphisms $h_n \in \text{Homeo}(C)$ as follows:

- $h_n(x) = x$ for all $x \in C \setminus (U_n \cup V_n)$,
- $h_n(0) = 0$,
- $h_n(U_{n+1}) = U_n$,
- $h_n(U_n \setminus U_{n+1}) = V_{n+1}$,
- $h_n(V_n) = V_n \setminus V_{n+1}$.

These restrict to homeomorphisms $h_n|_X$ on $X := C \setminus \{0\}$.

Show that the sequence $(h_n|_X)_{n\in\mathbb{N}} \subset \operatorname{Homeo}(X)$ converges to the identity on X but the sequence $((h_n|_X)^{-1})_{n\in\mathbb{N}} \subset \operatorname{Homeo}(X)$ of their inverses does not!

<u>Remark:</u> However, if X is locally compact and *locally connected* then Homeo(X) is a topological group.

Solution. The following picture gives a pictorial description of what h_1 does on the Cantor set C.

Since $h_n(0) = 0$ we obtain indeed a homeomorphism $h_n|_X \in \text{Homeo}(X)$ by restriction to $X = C \setminus \{0\}$. Let us first see that the sequence $(h_n|_X)_{n \in \mathbb{N}}$ indeed converges to $\text{Id} \in \text{Homeo}(X)$. For that let S(K, U) be a subbasis neighborhood of Id, i.e. K is a compact subset of X contained in some open set $U \subset X$. Therefore we can find an $M \in \mathbb{N}$ such that U_M and K are disjoint.

If $1 \notin K$ then there is also an $N \ge M$ such that V_n and K are disjoint. In this case $h_n | K$ is the identity and hence in S(K, U) for all $n \ge N$.

If $1 \in K$ then there is an $N \geq M$ such that V_N is contained in U. Consequently, we have

$$h_n(K \setminus V_n) = K \setminus V_n, \quad h_n(K \cap V_n) \subset V_n \subset V_N \subset U,$$

for all $n \geq N$.

In any case the sequence $(h_n|_X)_{n\in\mathbb{N}}$ will be in S(K,U) for large enough n such that $\lim_{n\to\infty} h_n|_X = \mathrm{Id}$. On the other hand $h_n^{-1}(1) \in U_n$ for every $n \in \mathbb{N}$ such that $\lim_{n\to\infty} h_n^{-1}(1) = 0$. Thus the sequence $(h_n^{-1}|_X)_{n\in\mathbb{N}}$ certainly does not converge to Id.

<u>Remark</u>: Note that we actually needed to remove 0 from C for this construction to work. In fact, the sequence h_n does not converge to Id in Homeo(C):

Let $K = [0, 1/9] \cap C, U = [0, 1/2) \cap C$. Then S(K, U) is again a neighborhood of Id. However, $U_n \subset K$ for every $n \geq 2$ and $V_{n+1} \subset U^c$ which implies that

$$h_n(U_n \setminus U_{n+1}) \subset U^c,$$

i.e. $h_n \notin S(K, U)$.

c) Let $\mathbb{S}^1 \subset \mathbb{C} \setminus \{0\}$ denote the circle. Show that Homeo(\mathbb{S}^1) is not locally compact.

<u>Remark</u>: In fact, Homeo(M) is not locally compact for any manifold M.

Solution. We will prove a more general fact, namely that Homeo(M) is not locally compact for any compact manifold M. Note that we can think of M as a compact metric space (M, d) by Urysohn's metrization theorem. In the case when M is a smooth manifolds this is even easier to see by endowing it with a Riemannian metric. This puts us now in the favorable position of being able to identify the compact-open topology on Homeo(X) with the topology of uniform convergence.

We denote by

$$d_{\infty}(f,g) := \sup\{d(f(x),g(x)) : x \in M\}$$

the metric of uniform convergence on Homeo(M). Further denote by $B_f^{\infty}(r)$ the ball of radius r > 0about a homeomorphism $f \in \text{Homeo}(M)$. In order to show that Homeo(M) is not locally compact we will construct in every $\varepsilon > 0$ ball about the identity $B_{\text{Id}}^{\infty}(\varepsilon)$ a sequence of homeomorphisms $(f_k)_{k \in \mathbb{N}}$ with no convergent subsequence.

Let $\varepsilon > 0$ and denote $B = B_{\mathrm{Id}}^{\infty}(\varepsilon)$. Further, let $x_0 \in M$ and choose a coordinate chart $\varphi : U \subset B_{\varepsilon/2}(x_0) \to \mathbb{R}^n$ centered at x_0 (i.e. $\varphi(x_0) = 0$) contained in the $\varepsilon/2$ -ball $B_{\varepsilon/2}(x_0)$ about x_0 in M. Consider the homeomorphisms

$$\psi_k : \overline{B_1}(0) \to \overline{B_1}(0), x \mapsto ||x||^k x$$

on the closed unit ball $\overline{B_1}(0)$ in \mathbb{R}^n which fix $0 \in \mathbb{R}^n$ and the boundary *n*-sphere pointwise. Note that the sequence $(\psi_k)_{k \in \mathbb{N}}$ converges pointwise to

$$\psi_{\infty} = \begin{cases} x, & \text{if } x \in \partial B_1(0) \\ 0, & \text{if } x \in B_1(0). \end{cases}$$

Now, define

$$f_k(x) := \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ \varphi^{-1}(\psi_k(\varphi(x))), & \text{if } x \in \varphi^{-1}(B_1(0)). \end{cases}$$

It is easy to see that the maps $f_k : M \to M$ are indeed homeomorphisms: $f_k|_{\varphi^{-1}(\overline{B_1}(0))^c} = \mathrm{Id} : \varphi^{-1}(\overline{B_1}(0))^c \to \varphi^{-1}(\overline{B_1}(0))^c$ is a homeomorphism, $\varphi^{-1} \circ \psi_k \circ \varphi : \varphi^{-1}(\overline{B_1}(0)) \to \varphi^{-1}(\overline{B_1}(0))$ is a homeomorphism and both coincide on $\varphi^{-1}(\partial B_1(0))$.

Further, the homeomorphisms f_k map the $\varepsilon/2$ -ball $B_{\varepsilon/2}(x_0)$ to itself and fix x_0 . Therefore,

$$d(f_k(x), x) \le d(f_k(x), \underbrace{f_k(x_0)}_{=x_0}) + d(x_0, x) < \varepsilon,$$

for every $x \in B_{\varepsilon/2}(x_0)$, and clearly $f_k(x) = x$ for every $x \notin B_{\varepsilon/2}(x_0)$. Hence, the sequence $(f_k)_{k \in \mathbb{N}}$ is in $B_{\varepsilon}^{\infty}(\mathrm{Id})$.

However, the sequence $(f_k)_{k \in \mathbb{N}}$ converges pointwise to

$$f_{\infty}(x) = \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ x_0, & \text{if } x \in \varphi^{-1}(B_1(0)), \end{cases}$$

If there were a subsequence $(f_{k_l})_{l \in \mathbb{N}}$ converging to some $f \in \text{Homeo}(M)$ uniformly then this sequence would also converge pointwise to f, i.e. f needs to coincide with f_{∞} . But f_{∞} is not even continuous which contradicts our assumption of $f \in \text{Homeo}(M)$. Therefore $(f_k)_{k \in \mathbb{N}} \subset B_{\varepsilon}^{\infty}(\text{Id})$ has no uniformly convergent subsequences.

Exercise 6. Locally Compact Hilbert Spaces are Finite-Dimensional Let \mathcal{H} be a Hilbert space a field $k = \mathbb{R}$ or \mathbb{C} . Show that \mathcal{H} is locally compact if and only if it is finite-dimensional.

Solution. One direction is easy: If \mathcal{H} is finite-dimensional it is isomorphic to k^n which is locally compact by Heine–Borel.

Suppose \mathcal{H} is infinite-dimensional and locally compact. Then every finite-dimensional subspace $V \subseteq \mathcal{H}$ is proper. In particular, its orthogonal complement V^{\perp} is non-empty. We will now construct a sequence of vectors $(w_n)_{n\in\mathbb{N}}$ inductively. Let us start with a unit vector $w_1 \in \mathcal{H}, ||w_1|| = 1$, and set $V_1 \coloneqq \langle v_1 \rangle$. We choose $w_{k+1} \in \mathcal{H}, ||w_{k+1}|| = 1$, inductively as a unit vector in V_k^{\perp} and set $V_{k+1} \coloneqq \langle w_1, \ldots, w_{k+1} \rangle$. Note that $||w_k - w_l|| = 1$ for all $1 \leq l < k$ by definition. Therefore, $(w_k)_{k\in\mathbb{N}}$ admits no convergent subsequence.

On the other hand, there is some r > 0 such that the closed ball $\overline{B}_r(0) \subset \mathcal{H}$ is compact, because \mathcal{H} is locally compact. Rescaling this ball shows that any closed ball in \mathcal{H} is compact, in particular the closed unit ball is compact, too. The sequence $(w_k)_{k \in \mathbb{N}}$ is contained in the closed unit ball and admits a convergent subsequence by compactness; contradiction!

Exercise 7 (Unitary Operators). Let \mathcal{H} be a Hilbert space and $U(\mathcal{H})$ its group of unitary operators. Show that the weak operator topology coincides with the strong operator topology on $U(\mathcal{H})$.

<u>Hint</u>: Recall that a sequence $(T_n)_{n \in \mathbb{N}} \subset U(\mathcal{H})$ of unitary operators converges to a unitary operator T with respect to the *weak operator topology* if

$$\lambda(T_n x) \to \lambda(T x) \quad (n \to \infty)$$

for every linear functional $\lambda \in \mathcal{H}^*$ and every $x \in \mathcal{H}$.

A sequence $(T_n)_{n \in \mathbb{N}} \subset U(\mathcal{H})$ of unitary operators converges to a unitary operator T with respect to the strong operator topology if

$$T_n x \to T x \quad (n \to \infty)$$

for every $x \in \mathcal{H}$.

Solution. Recall that a sequence $(T_n)_{n \in \mathbb{N}} \subset U(\mathcal{H})$ of unitary operators converges to a unitary operator T with respect to the *weak operator topology* if

$$\lambda(T_n x) \to \lambda(T x) \quad (n \to \infty)$$

for every linear functional $\lambda \in \mathcal{H}^*$ and every $x \in \mathcal{H}$.

A sequence $(T_n)_{n \in \mathbb{N}} \subset U(\mathcal{H})$ of unitary operators converges to a unitary operator T with respect to the strong operator topology if

$$T_n x \to T x \quad (n \to \infty)$$

for every $x \in \mathcal{H}$.

In order to show that the weak operator topology coincides with the strong operator topology it will be sufficient to show that a sequence $(T_n)_{n\in\mathbb{N}} \subset U(\mathcal{H})$ converges with respect to the weak operator topology to $T \in U(\mathcal{H})$ if and only if $(T_n)_{n\in\mathbb{N}}$ converges with respect to the strong operator topology to T.

" \Leftarrow ": Let $T_n \to T$ strongly and let $\lambda \in \mathcal{H}^*, x \in \mathcal{H}$. Then because λ is continuous and $T_n x \to T_x$ we get $\lambda(T_n x) \to \lambda(T x)$

as $n \to \infty$.

" \implies ": Let $T_n \to T$ weakly and let $x \in \mathcal{H}$. We need to see that

$$||T_n x - Tx||^2 \to 0 \quad (n \to \infty)$$

We compute

$$\begin{aligned} |T_n x - Tx||^2 &= \langle T_n x - Tx, T_n - Tx \rangle \\ &= \langle T_n x, T_n x \rangle - \langle T_n x, Tx \rangle - \langle Tx, T_n x \rangle + \langle Tx, Tx \rangle \\ &= \langle x, x \rangle - \langle T_n x, Tx \rangle - \langle Tx, T_n x \rangle + \langle x, x \rangle \\ &= 2||x||^2 - \left(\langle T_n x, Tx \rangle + \overline{\langle T_n x, Tx \rangle} \right) \\ &= 2||x||^2 - 2\Re \left(\langle T_n x, Tx \rangle \right) \\ &\to 2||x||^2 - 2||Tx||^2 = 2||x||^2 - 2||x||^2 = 0 \quad (n \to \infty), \end{aligned}$$

where we have used that T_n and T are unitary and that $\langle \cdot, Tx \rangle$ is a continuous linear functional.

Exercise 8 (*p*-adic Integers \mathbb{Z}_p). Let $p \in \mathbb{N}$ be a prime number. Recall that the *p*-adic integers \mathbb{Z}_p can be seen as the subspace

$$\left\{ (a_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z} : a_{n+1} \equiv a_n \, (\text{mod } p^n) \right\}$$

of the infinite product $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}_p$ carrying the induced topology. Note that each $\mathbb{Z}/p^n \mathbb{Z}$ carries the discrete topology and $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}$ is endowed with the resulting product topology.

a) Show that the image of \mathbb{Z} via the embedding

$$\iota: \mathbb{Z} \to \mathbb{Z}_p,$$
$$x \mapsto (x \pmod{p^n})_{n \in \mathbb{N}}$$

is dense. In particular, \mathbb{Z}_p is a compactification of \mathbb{Z} .

Solution. Let $(x_n) \in \mathbb{Z}_p$. A neighborhood basis of (x_n) is given by the sets

$$B_m((x_n)) = \{(y_n) \in \mathbb{Z}_p : x_1 = y_1, \dots, x_m = y_m\}, m \in \mathbb{N}.$$

Let $m \in \mathbb{N}$. We want to construct an integer $x \in \mathbb{Z}$ such that $\iota(x) \in B_m((x_n))$. It suffices to take a preimage $x \in \mathbb{Z}$ of $x_m \in \mathbb{Z}/p^m\mathbb{Z}$ under $\pi_m : \mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$. Then we clearly obtain

$$x_m \equiv x \pmod{p^m},$$

$$x_{m-1} \equiv x_m \pmod{p^{m-1}} \equiv x \pmod{p^{m-1}}$$

$$\vdots$$

$$x_1 \equiv x \pmod{p}.$$

That is $\iota(x) \in B_m((x_n))$.

b) Show that the 2-adic integers \mathbb{Z}_2 are homeomorphic to the "middle thirds" cantor set

$$C = \left\{ \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} : \varepsilon_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\} \subset [0, 1].$$

Solution. We will prove that the map

$$\varphi: C \to \mathbb{Z}_2,$$
$$\sum_{n=1}^{\infty} \varepsilon_n 3^{-n} \mapsto \left(\sum_{k=1}^n \frac{\varepsilon_k}{2} \cdot 2^{k-1} \right)_{n \in \mathbb{N}}$$

is a homeomorphism.

 φ is well-defined because

$$\varphi\left(\sum_{n=1}^{\infty}\varepsilon_n 3^{-n}\right)_n \equiv \sum_{k=1}^n \frac{\varepsilon_k}{2} \cdot 2^{k-1} + \frac{\varepsilon_{n+1}}{2} \cdot 2^n \equiv \varphi\left(\sum_{n=1}^{\infty}\varepsilon_n 3^{-n}\right)_{n+1} \pmod{2^n}.$$

By uniqueness of 2-adic expansions φ is injective.

 φ is surjective because for every $(x_n)_{n\in\mathbb{N}}\in\mathbb{Z}_2$ we can find 2-adic expansions

$$x_n = a_0^{(n)} + a_1^{(n)} \cdot 2 + \dots + a_{n-1}^{(n)} \cdot 2^{n-1}, \quad n \in \mathbb{N}$$

with unique $a_i^{(n)} \in \{0,1\}$. By the compatibility condition in \mathbb{Z}_2

$$x_n \equiv x_{n+1} \pmod{2^n}$$

we get that $a_i^{(n)} = a_i^{(n+1)}$ for every i < n. Hence, we can write

$$x_n = a_0 + a_1 \cdot 2 + \dots + a_{n-1} \cdot 2^{n-1}, \quad n \in \mathbb{N},$$

with unique $a_i \in \{0, 1\}$. Thus,

$$\varphi\left(\sum_{n=1}^{\infty} 2a_n 3^{-n}\right) = (x_n)_{n \in \mathbb{N}},$$

i.e. φ is surjective.

In order to prove that φ is continuous and open we first need to deduce the following neat relation: For every $c = \sum_{n=1}^{\infty} \varepsilon_n 3^{-n}, d = \sum_{n=1}^{\infty} \delta_n 3^{-n} \in C$

 $-\log_3 |d-c| \le \min\{k \in \mathbb{N} : \varepsilon_k \ne \delta_k\} \le -\log_3 |d-c| + 1.$

Indeed, let $m = \min\{k \in \mathbb{N} : \varepsilon_k \neq \delta_k\}$. Then

$$|d-c| = \left| (\delta_m - \varepsilon_m) \cdot 3^{-m} + \sum_{n=m+1}^{\infty} (\delta_n - \varepsilon_n) \cdot 3^{-n} \right|$$

$$\geq \left| \underbrace{|\delta_m - \varepsilon_m|}_{=2} \cdot 3^{-m} - \left| \sum_{n=m+1}^{\infty} (\delta_n - \varepsilon_n) \cdot 3^{-n} \right| \right|$$

$$\geq \frac{2}{3^m} - \sum_{n=m+1}^{\infty} |\delta_n - \varepsilon_n| \cdot 3^{-n}$$

$$\geq \frac{2}{3^m} - \sum_{n=m+1}^{\infty} 2 \cdot 3^{-n} = \frac{2}{3^m} - \frac{1}{3^m} = 3^{-m}.$$

Applying the logarithm to base 3 on both sides yields the first inequality.

The second inequality follows from the following easier computation.

$$\begin{aligned} |d-c| &= \left|\sum_{n=m}^{\infty} (\delta_n - \varepsilon_n) \cdot 3^{-n}\right| \le \sum_{n=m}^{\infty} 2 \cdot 3^{-n} = \frac{1}{3^{m-1}}\\ \Longrightarrow \log_3 |d-c| \le -m+1. \end{aligned}$$

Now, let $c = \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} \in C$ and consider a neighborhood $B_m(\varphi(c))$. Then

$$d = \sum_{n=1}^{\infty} \delta_n 3^{-n} \in \varphi^{-1}(B_m(\varphi(c)))$$
$$\iff \sum_{k=1}^{l} \frac{\varepsilon_k}{2} \cdot 2^{k-1} = \sum_{k=1}^{l} \frac{\delta_k}{2} \cdot 2^{k-1}, \quad \forall 1 \le l \le m$$
$$\iff \varepsilon_k = \delta_k, \quad \forall k = 1, \dots, m$$
$$\iff \min\{k \in \mathbb{N} : \varepsilon_k \ne \delta_k\} \ge m+1$$

By the previously deduced relation this readily implies

$$B_{m+1}(\varphi(c)) \subset \varphi(C \cap (-3^{-m} + c, c + 3^{-m})) \subset B_m(\varphi(c)).$$

It follows that φ is continuous and open.