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Exercise Sheet 1

Exercise 1 (Compact-Open Topology). Let X,Y, Z be a topological space, and denote by C(Y,X) :=
{f : Y → X continuous} the set of continuous maps from Y to X. The set C(Y,X) can be endowed with the
compact-open topology, that is generated by the subbasic sets

S(K,U) := {f ∈ C(Y,X) | f(K) ⊆ U},

where K ⊆ Y is compact and U ⊆ X is open.

Prove the following useful facts about the compact-open topology.

If Y is locally compact1 , then:

a) The evaluation map e : C(Y,X)× Y → X, e(f, y) := f(y), is continuous.

b) A map f : Y × Z → X is continuous if and only if the map

f̂ : Z → C(Y,X), f̂(z)(y) = f(y, z),

is continuous.

Solution. a) For (f, y) ∈ C(Y,X) × Y let U ⊂ X be an open neighborhood of f(y). Since Y is locally
compact, continuity of f implies there is a compact neighborhood K ⊂ Y of y such that f(K) ⊂ U .
Then S(K,U) ×K is a neighborhood of (f, y) in C(Y,X) × Y taken to U by e, so e is continuous at
(f, y).

b) Suppose f : Y ×Z → X is continuous. To show continuity of f̂ it suffices to show that for a subbasic set

S(K,U) ⊂ C(Y,X), the set f̂−1(S(K,U)) = {z ∈ Z | f(K, z) ⊂ U} is open in Z. Let z ∈ f̂−1(S(K,U)).
Since f−1(U) is an open neighborhood of the compact set K × {z}, there exist open sets V ⊂ Y and
W ⊂ Z whose product V ×W satisfies K × {z} ⊂ V ×W ⊂ f−1(U). Indeed, f−1(U) = ∪i∈IVi ×Wi

and we can choose a finite family I ′ ⊂ I with K × {z} ⊂ ∪i∈I′Vi ×Wi. Then set W := ∩z∈Wi
Wi and

V := ∪z∈WiVi.

So W is a neighborhood of z in f̂−1(S(K,U)). (The hypothesis that Y is locally compact is not needed
here.)

For the converse of b) note that f is the composition Y × Z → Y × C(Y,X) → X of Id × f̂ and the
evaluation map, so part a) gives the result.

Exercise 2 (General Linear Group GL(n,R)). The general linear group

GL(n,R) := {A ∈ Rn×n |detA ̸= 0} ⊆ Rn×n

is naturally endowed with the subspace topology of Rn×n ∼= Rn2

. However, it can also be seen as a subset of
the space of homeomorphisms of Rn via the injection

j : GL(n,R) → Homeo(Rn),
A 7→ (x 7→ Ax).

1A subset C ⊆ Y that contains an open subset U ⊆ Y with y ∈ U ⊆ C ⊆ Y is called a neighborhood of y ∈ Y . Then Y
is called locally compact if for every y ∈ Y there is a set D of compact neighborhoods of y such that every neighborhood of y
contains an element of D as a subset.
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a) Show that j(GL(n,R)) ⊂ Homeo(Rn) is a closed subset, where Homeo(Rn) ⊂ C(Rn,Rn) is endowed
with the compact-open topology.

Solution. Note that

j(GL(n,R)) = {f ∈ Homeo(Rn) : f(λx+ y) = λf(x) + f(y) for all λ ∈ R, x, y ∈ Rn}.

Since evaluation is continuous also the maps

Fλ,x,y : Homeo(Rn) → Rn

f 7→ f(λx+ y)− λf(x)− f(y)

are continuous for all λ ∈ R, x, y ∈ Rn.
Thus,

j(GL(n,R)) =
⋂

λ∈R,x,y∈X
F−1
λ,x,y(0) ⊂ Homeo(Rn)

is closed as the intersection of closed sets.

b) If we identify GL(n,R) with its image j(GL(n,R)) ⊂ Homeo(Rn) we can endow it with the induced
subspace topology. Show that this topology coincides with the usual topology coming from the inclusion
GL(n,R) ⊂ Rn×n.
Hint: Exercise 1 can be useful here.

Solution. Consider the inclusions

i : GL(n,R) → Rn×n,

A 7→

 | |
Ae1 · · · Aen
| |

 ,

where e1, . . . , en denotes the standard basis of Rn×n.
Further, consider the maps

φ : Rn×n → C(Rn,Rn), | |
v1 · · · vn
| |

 7→ (x 7→ x1 · v1 + · · ·+ xn · vn) ,

and

ψ : C(Rn,Rn) → Rn×n,

f 7→

 | |
f(e1) · · · f(en)

| |

 .

It is easy to verify that these form the following commutative diagram.

GL(n,R)

Rn×n C(Rn,Rn)
i

j

φ

ψ

Since both topologies under consideration on GL(n,R) come from pulling back the topologies of Rn×n
resp. C(Rn,Rn) via i resp. j they will coincide if we can show that the maps φ and ψ are continuous2.

2Let τi, τj denote the topologies, so that τi is the smallest topology on GL(n,R) such that i is continuous and τj is the
smallest such that j is continuous. If φ is continuous, then

j = φ ◦ i : (GL(n,R), τi) → C(Rn,Rn)

is continuous, thus τj ⊂ τi. Analogously, if ψ is continuous, then τi ⊂ τj and so the two topologies coincide.
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The map ψ is continuous because it is the product of the evaluation maps

evei
: C(Rn,Rn) → Rn, evei

(f) = f(ei)

(i = 1, . . . , n).

Further, observe that the map

ev ◦(φ× Id) : Rn×n × Rn → Rn, (A, x) 7→ Ax

is continuous. This implies that φ is continuous.

Exercise 3 (O(p, q)). We consider the orthogonal group O(p, q) of signature p, q ≥ 1.

a) Show that the connected component of the group O(1, 1) containing the identity is homeomorphic to
R.

b) Show that for all p, q ≥ 1, O(p, q) has a subgroup isomorphic to R.

Solution. a) We recall that

O(1, 1) =

{
g ∈ GL(2,R) : tg

(
−1 0
0 1

)
g =

(
−1 0
0 1

)}
.

Now if

g =

(
a b
c d

)
∈ O(1, 1),

we obtain the conditions a2 − c2 = 1, d2 − b2 = 1 and ab = cd. Rephrasing a = cd/b and b = cd/a we
obtain (

cd

b

)2

− c2 = 1 and d2 −
(
cd

a

)2

= 1

⇐⇒ c2d2 − c2b2 = b2 and a2d2 − c2d2 = a2

⇐⇒ 1 = d2 − b2 = b2/c2 and 1 = a2 − c2 = a2/d2

⇐⇒ b2 = c2 and a2 = d2,

so a = ±d and b = ±c. By ab = cd, both signs have to be the same. We obtain that

O(1, 1) =

{(
a b
b a

)
∈ GL(2,R) : a2 − b2 = 1

}
∪
{(

a b
−b −a

)
∈ GL(2,R) : a2 − b2 = 1

}
.

Every a, b with a2 − b2 = 1 can be written as a = cosh(φ) and b = sinh(φ) for some φ ∈ R. The
description of O(1, 1) above shows that there are two parts of O(1, 1), both of which are pathconnected,
(parametrize the paths using φ). We claim that the two parts are distinct connected components:

Note that the determinant on the first part is a2 − b2 = 1 and the determinant on the second part is
−a2 + b2 = −1. Since the determinant is a continuous map O(1, 1) → R whose image is not connected,
also O(1, 1) is not connected.

We note that the first component contains Id when φ = 0, so the connected component of the identity
is

O(1, 1)◦ =

{(
a b
b a

)
∈ GL(2,R) : a2 − b2 = 1

}
=

{(
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)
∈ GL(2,R) : φ ∈ R

}
and the last description shows that it is homeomorphic to R.
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b) Equipped with the ideas from part a), we consider the subgroup

G = {g(φ) : φ ∈ R} for g(φ) =



cosh(φ) 0 · · · sinh(φ) 0 · · ·

0 1
. . . 0 0

. . .
...

. . .
. . .

...
. . .

. . .

sinh(φ) 0 · · · cosh(φ) 0 · · ·

0 0
. . . 0 1

. . .
...

. . .
. . .

...
. . .

. . .


Explicit calculations show that g(φ) ∈ O(p, q).

Exercise 4 (Isometry Group Iso(X)). Let (X, d) be a compact metric space. Recall that the isometry group
of X is defined as

Iso(X) = {f ∈ Homeo(X) : d(f(x), f(y)) = d(x, y) for all x, y ∈ X}.

Show that Iso(X) ⊂ Homeo(X) is compact with respect to the compact-open topology.

Hint: Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply
Arzelà–Ascoli’s theorem, see Appendix A.2 in Prof. Alessandra Iozzi’s book.

Solution. The compact-open topology on Homeo(X) coincides with the topology induced by the metric of
uniform convergence

d∞(f, g) = sup{d(f(x), g(x)) : x ∈ X}.

Note that by Arzelà–Ascoli (Theorem A.1 in the lecture notes) a family F ⊆ C(X,X) of continuous maps is
compact if and only if F is equicontinuous, and F is closed.

Equicontinuity of F := Iso(X) is clear, because we are dealing with isometries. We check that Iso(X) is
closed.

Let f ∈ C(X,X) and let (fn)n∈N ⊂ Iso(X) be a sequence converging to it. Let x, y ∈ X then

0 ≤ |d(f(x), f(y))− d(x, y)|
= |d(f(x), f(y))− d(fn(x), fn(y))|
≤ |d(f(x), f(y))− d(fn(x), f(y))|+ |d(fn(x), f(y))− d(fn(x), fn(y))|
≤ d(f(x), fn(x)) + d(f(y), fn(y)) → 0 (n→ ∞).

Hence, f is an isometry as wished for. Because f was arbitrary this shows that Iso(X) ⊆ C(X,X) is closed.

Exercise† 5 (Homeomorphism Group Homeo(X)).

a) Let X be a compact Hausdorff space. Show that (Homeo(X), ◦) is a topological group when endowed
with the compact-open topology.

Solution. Denote by m : Homeo(X)× Homeo(X) → Homeo(X) the composition m(f, g) = f ◦ g and
by i : Homeo(X) → Homeo(X) the inversion i(f) = f−1. We need to see that m and i are continuous.

i) m is continuous: We want to show that m is continuous at any tuple (f, g) ∈ Homeo(X) ×
Homeo(X). Thus let S(K,U) ∋ f ◦ g be a subbasis neighborhood of f ◦ g, i.e. K ⊂ X is compact
and U ⊂ X is open such that f(g(K)) ⊂ U . Observe that g(K) is compact and is contained in
f−1(U) which is open. Because X is (locally) compact we may find an open set V ⊂ X with
compact closure V such that

g(K) ⊂ V ⊂ V ⊂ f−1(U).
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It is now easy to verify that W := S(V ,U)× S(K,V ) is an open neighborhood of (f, g) such that
m(W ) ⊂ S(K,U). Indeed, (f, g) is by construction of V contained in W and for any (h1, h2) ∈W
we get

h2(K) ⊂ V ⊂ V ⊂ h−1
1 (U).

Hence, m is continuous at every point of Homeo(X)×Homeo(X).

ii) i is continuous: Let f ∈ Homeo(X), K ⊂ X compact and U ⊂ X open. Then

i(f) ∈ S(K,U) ⇐⇒ f−1(K) ⊂ U ⇐⇒ K ⊂ f(U)

⇐⇒ f(U c) = f(U)c ⊂ Kc ⇐⇒ f ∈ S(U c,Kc).

Observe that U c is compact as a closed subset of the compact space X and that Kc is open as the
complement of a (compact) closed set.

This shows that i−1(S(K,U)) = S(U c,Kc) for every element S(K,U) of a subbasis for the
compact-open topology on Homeo(X), whence i is continuous.

b) The objective of this exercise is to show that (Homeo(X), ◦) will not necessarily be a topological group
if X is only locally compact.

Consider the “middle thirds” Cantor set

C =

{ ∞∑
n=1

εn3
−n : εn ∈ {0, 2} for each n ∈ N

}
⊂ [0, 1]

in the unit interval. We define the sets Un = C∩ [0, 3−n] and Vn = C∩ [1−3−n, 1]. Further we construct
a sequence of homeomorphisms hn ∈ Homeo(C) as follows:

• hn(x) = x for all x ∈ C \ (Un ∪ Vn),
• hn(0) = 0,

• hn(Un+1) = Un,

• hn(Un \ Un+1) = Vn+1,

• hn(Vn) = Vn \ Vn+1.

These restrict to homeomorphisms hn|X on X := C \ {0}.
Show that the sequence (hn|X)n∈N ⊂ Homeo(X) converges to the identity on X but the sequence
((hn|X)−1)n∈N ⊂ Homeo(X) of their inverses does not!

Remark: However, if X is locally compact and locally connected then Homeo(X) is a topological group.

Solution. The following picture gives a pictorial description of what h1 does on the Cantor set C.

0 1
3

2
3

1

0
1
3

2
3 1

h1

U2 U1 \ U2 V1

U1 V1 \ V2 V2
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Since hn(0) = 0 we obtain indeed a homeomorphism hn|X ∈ Homeo(X) by restriction to X = C \ {0}.
Let us first see that the sequence (hn|X)n∈N indeed converges to Id ∈ Homeo(X). For that let S(K,U)
be a subbasis neighborhood of Id, i.e. K is a compact subset of X contained in some open set U ⊂ X.
Therefore we can find an M ∈ N such that UM and K are disjoint.

If 1 /∈ K then there is also an N ≥M such that Vn and K are disjoint. In this case hn|K is the identity
and hence in S(K,U) for all n ≥ N .

If 1 ∈ K then there is an N ≥M such that VN is contained in U . Consequently, we have

hn(K \ Vn) = K \ Vn, hn(K ∩ Vn) ⊂ Vn ⊂ VN ⊂ U,

for all n ≥ N .

In any case the sequence (hn|X)n∈N will be in S(K,U) for large enough n such that limn→∞ hn|X = Id.
On the other hand h−1

n (1) ∈ Un for every n ∈ N such that limn→∞ h−1
n (1) = 0. Thus the sequence

(h−1
n |X)n∈N certainly does not converge to Id.

Remark: Note that we actually needed to remove 0 from C for this construction to work. In fact, the
sequence hn does not converge to Id in Homeo(C):

Let K = [0, 1/9]∩C,U = [0, 1/2)∩C. Then S(K,U) is again a neighborhood of Id. However, Un ⊂ K
for every n ≥ 2 and Vn+1 ⊂ U c which implies that

hn(Un \ Un+1) ⊂ U c,

i.e. hn /∈ S(K,U).

c) Let S1 ⊂ C \ {0} denote the circle. Show that Homeo(S1) is not locally compact.

Remark: In fact, Homeo(M) is not locally compact for any manifold M .

Solution. We will prove a more general fact, namely that Homeo(M) is not locally compact for any
compact manifold M . Note that we can think of M as a compact metric space (M,d) by Urysohn’s
metrization theorem. In the case when M is a smooth manifolds this is even easier to see by endowing
it with a Riemannian metric. This puts us now in the favorable position of being able to identify the
compact-open topology on Homeo(X) with the topology of uniform convergence.

We denote by
d∞(f, g) := sup{d(f(x), g(x)) : x ∈M}

the metric of uniform convergence on Homeo(M). Further denote by B∞
f (r) the ball of radius r > 0

about a homeomorphism f ∈ Homeo(M). In order to show that Homeo(M) is not locally compact we
will construct in every ε > 0 ball about the identity B∞

Id (ε) a sequence of homeomorphisms (fk)k∈N
with no convergent subsequence.

Let ε > 0 and denote B = B∞
Id (ε). Further, let x0 ∈ M and choose a coordinate chart φ : U ⊂

Bε/2(x0) → Rn centered at x0 (i.e. φ(x0) = 0) contained in the ε/2-ball Bε/2(x0) about x0 in M .
Consider the homeomorphisms

ψk : B1(0) → B1(0), x 7→ ∥x∥kx

on the closed unit ball B1(0) in Rn which fix 0 ∈ Rn and the boundary n-sphere pointwise. Note that
the sequence (ψk)k∈N converges pointwise to

ψ∞ =

{
x, if x ∈ ∂B1(0),

0, if x ∈ B1(0).

Now, define

fk(x) :=

{
x, if x /∈ φ−1(B1(0)),

φ−1(ψk(φ(x))), if x ∈ φ−1(B1(0)).

It is easy to see that the maps fk : M → M are indeed homeomorphisms: fk|φ−1(B1(0))c
= Id :

φ−1(B1(0))
c → φ−1(B1(0))

c is a homeomorphism, φ−1 ◦ ψk ◦ φ : φ−1(B1(0)) → φ−1(B1(0)) is a
homeomorphism and both coincide on φ−1(∂B1(0)).
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Further, the homeomorphisms fk map the ε/2-ball Bε/2(x0) to itself and fix x0. Therefore,

d(fk(x), x) ≤ d(fk(x), fk(x0)︸ ︷︷ ︸
=x0

) + d(x0, x) < ε,

for every x ∈ Bε/2(x0), and clearly fk(x) = x for every x /∈ Bε/2(x0). Hence, the sequence (fk)k∈N is
in B∞

ε (Id).

However, the sequence (fk)k∈N converges pointwise to

f∞(x) =

{
x, if x /∈ φ−1(B1(0)),

x0, if x ∈ φ−1(B1(0)),

If there were a subsequence (fkl)l∈N converging to some f ∈ Homeo(M) uniformly then this sequence
would also converge pointwise to f , i.e. f needs to coincide with f∞. But f∞ is not even continuous
which contradicts our assumption of f ∈ Homeo(M). Therefore (fk)k∈N ⊂ B∞

ε (Id) has no uniformly
convergent subsequences.

Exercise 6. Locally Compact Hilbert Spaces are Finite-Dimensional Let H be a Hilbert space a field k = R
or C. Show that H is locally compact if and only if it is finite-dimensional.

Solution. One direction is easy: If H is finite-dimensional it is isomorphic to kn which is locally compact
by Heine–Borel.

Suppose H is infinite-dimensional and locally compact. Then every finite-dimensional subspace V ⊆ H is
proper. In particular, its orthogonal complement V ⊥ is non-empty. We will now construct a sequence of
vectors (wn)n∈N inductively. Let us start with a unit vector w1 ∈ H, ∥w1∥ = 1, and set V1 := ⟨v1⟩. We
choose wk+1 ∈ H, ∥wk+1∥ = 1, inductively as a unit vector in V ⊥

k and set Vk+1 := ⟨w1, . . . , wk+1⟩. Note that
∥wk − wl∥ = 1 for all 1 ≤ l < k by definition. Therefore, (wk)k∈N admits no convergent subsequence.

On the other hand, there is some r > 0 such that the closed ball Br(0) ⊂ H is compact, because H is locally
compact. Rescaling this ball shows that any closed ball in H is compact, in particular the closed unit ball is
compact, too. The sequence (wk)k∈N is contained in the closed unit ball and admits a convergent subsequence
by compactness; contradiction!

Exercise 7 (Unitary Operators). Let H be a Hilbert space and U(H) its group of unitary operators. Show
that the weak operator topology coincides with the strong operator topology on U(H).

Hint: Recall that a sequence (Tn)n∈N ⊂ U(H) of unitary operators converges to a unitary operator T with
respect to the weak operator topology if

λ(Tnx) → λ(Tx) (n→ ∞)

for every linear functional λ ∈ H∗ and every x ∈ H.

A sequence (Tn)n∈N ⊂ U(H) of unitary operators converges to a unitary operator T with respect to the
strong operator topology if

Tnx→ Tx (n→ ∞)

for every x ∈ H.

Solution. Recall that a sequence (Tn)n∈N ⊂ U(H) of unitary operators converges to a unitary operator T
with respect to the weak operator topology if

λ(Tnx) → λ(Tx) (n→ ∞)

for every linear functional λ ∈ H∗ and every x ∈ H.
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A sequence (Tn)n∈N ⊂ U(H) of unitary operators converges to a unitary operator T with respect to the
strong operator topology if

Tnx→ Tx (n→ ∞)

for every x ∈ H.

In order to show that the weak operator topology coincides with the strong operator topology it will be
sufficient to show that a sequence (Tn)n∈N ⊂ U(H) converges with respect to the weak operator topology to
T ∈ U(H) if and only if (Tn)n∈N converges with respect to the strong operator topology to T .

“ ⇐= ”: Let Tn → T strongly and let λ ∈ H∗, x ∈ H. Then because λ is continuous and Tnx→ Tx we get

λ(Tnx) → λ(Tx)

as n→ ∞.

“ =⇒ ”: Let Tn → T weakly and let x ∈ H. We need to see that

∥Tnx− Tx∥2 → 0 (n→ ∞).

We compute

∥Tnx− Tx∥2 = ⟨Tnx− Tx, Tn − Tx⟩
= ⟨Tnx, Tnx⟩ − ⟨Tnx, Tx⟩ − ⟨Tx, Tnx⟩+ ⟨Tx, Tx⟩
= ⟨x, x⟩ − ⟨Tnx, Tx⟩ − ⟨Tx, Tnx⟩+ ⟨x, x⟩

= 2∥x∥2 −
(
⟨Tnx, Tx⟩+ ⟨Tnx, Tx⟩

)
= 2∥x∥2 − 2ℜ (⟨Tnx, Tx⟩)
→ 2∥x∥2 − 2∥Tx∥2 = 2∥x∥2 − 2∥x∥2 = 0 (n→ ∞),

where we have used that Tn and T are unitary and that ⟨·, Tx⟩ is a continuous linear functional.

Exercise 8 (p-adic Integers Zp). Let p ∈ N be a prime number. Recall that the p-adic integers Zp can be
seen as the subspace {

(an)n∈N ∈
∏
n∈N

Z/pnZ : an+1 ≡ an (mod pn)

}
of the infinite product

∏
n∈N Z/pnZp carrying the induced topology. Note that each Z/pnZ carries the discrete

topology and
∏
n∈N Z/pnZ is endowed with the resulting product topology.

a) Show that the image of Z via the embedding

ι :Z → Zp,
x 7→ (x (mod pn))n∈N

is dense. In particular, Zp is a compactification of Z.
Solution. Let (xn) ∈ Zp. A neighborhood basis of (xn) is given by the sets

Bm((xn)) = {(yn) ∈ Zp : x1 = y1, . . . , xm = ym}, m ∈ N.

Let m ∈ N. We want to construct an integer x ∈ Z such that ι(x) ∈ Bm((xn)). It suffices to take a
preimage x ∈ Z of xm ∈ Z/pmZ under πm : Z → Z/pmZ. Then we clearly obtain

xm ≡ x(mod pm),

xm−1 ≡ xm(mod pm−1) ≡ x(mod pm−1),

...

x1 ≡ x(mod p).

That is ι(x) ∈ Bm((xn)).
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b) Show that the 2-adic integers Z2 are homeomorphic to the “middle thirds” cantor set

C =

{ ∞∑
n=1

εn3
−n : εn ∈ {0, 2} for each n ∈ N

}
⊂ [0, 1].

Solution. We will prove that the map

φ : C → Z2,

∞∑
n=1

εn3
−n 7→

(
n∑
k=1

εk
2

· 2k−1

)
n∈N

is a homeomorphism.

φ is well-defined because

φ

( ∞∑
n=1

εn3
−n

)
n

≡
n∑
k=1

εk
2

· 2k−1 +
εn+1

2
· 2n ≡ φ

( ∞∑
n=1

εn3
−n

)
n+1

(mod 2n).

By uniqueness of 2-adic expansions φ is injective.

φ is surjective because for every (xn)n∈N ∈ Z2 we can find 2-adic expansions

xn = a
(n)
0 + a

(n)
1 · 2 + · · ·+ a

(n)
n−1 · 2n−1, n ∈ N,

with unique a
(n)
i ∈ {0, 1}. By the compatibility condition in Z2

xn ≡ xn+1(mod 2n)

we get that a
(n)
i = a

(n+1)
i for every i < n. Hence, we can write

xn = a0 + a1 · 2 + · · ·+ an−1 · 2n−1, n ∈ N,

with unique ai ∈ {0, 1}. Thus,

φ

( ∞∑
n=1

2an3
−n

)
= (xn)n∈N,

i.e. φ is surjective.

In order to prove that φ is continuous and open we first need to deduce the following neat relation: For
every c =

∑∞
n=1 εn3

−n, d =
∑∞
n=1 δn3

−n ∈ C

− log3 |d− c| ≤ min{k ∈ N : εk ̸= δk} ≤ − log3 |d− c|+ 1.

Indeed, let m = min{k ∈ N : εk ̸= δk}. Then

|d− c| =

∣∣∣∣∣(δm − εm) · 3−m +

∞∑
n=m+1

(δn − εn) · 3−n
∣∣∣∣∣

≥

∣∣∣∣∣∣|δm − εm|︸ ︷︷ ︸
=2

·3−m −

∣∣∣∣∣
∞∑

n=m+1

(δn − εn) · 3−n
∣∣∣∣∣
∣∣∣∣∣∣

≥ 2

3m
−

∞∑
n=m+1

|δn − εn| · 3−n

≥ 2

3m
−

∞∑
n=m+1

2 · 3−n =
2

3m
− 1

3m
= 3−m.

Applying the logarithm to base 3 on both sides yields the first inequality.
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The second inequality follows from the following easier computation.

|d− c| =

∣∣∣∣∣
∞∑
n=m

(δn − εn) · 3−n
∣∣∣∣∣ ≤

∞∑
n=m

2 · 3−n =
1

3m−1

=⇒ log3 |d− c| ≤ −m+ 1.

Now, let c =
∑∞
n=1 εn3

−n ∈ C and consider a neighborhood Bm(φ(c)). Then

d =

∞∑
n=1

δn3
−n ∈ φ−1(Bm(φ(c)))

⇐⇒
l∑

k=1

εk
2

· 2k−1 =

l∑
k=1

δk
2

· 2k−1, ∀1 ≤ l ≤ m

⇐⇒ εk = δk, ∀k = 1, . . . ,m

⇐⇒ min{k ∈ N : εk ̸= δk} ≥ m+ 1

By the previously deduced relation this readily implies

Bm+1(φ(c)) ⊂ φ(C ∩ (−3−m + c, c+ 3−m)) ⊂ Bm(φ(c)).

It follows that φ is continuous and open.

10


