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Solutions of Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and µ : G×X →
X a continuous transitive group action, i.e. for any two x, y ∈ X there is g ∈ G such that µ(g, x) = g · x = y.

a) Show that if G is compact then X is compact.

b) Show that if G is connected then X is connected.

Solution. Let x0 ∈ X and consider the map

ϕ : G→ X,

g 7→ µ(g, x0).

Because µ is a continuous action the map ϕ is continuous too. Further the action µ is transitive, i.e. for every
y ∈ X there is a g ∈ G such that µ(g, x0) = y. In other words, ϕ is surjective.

Part a) follows from the fact that X = ϕ(G) is compact as the image of a compact group.

Part b) follows from the fact that continuous maps send connected components to connected components
and again that ϕ(G) = X.

Exercise 2 (Examples of Haar Measures). We start with a general remark about the regularity of the
measures in the exercise.

Theorem (Thm 7.8 in Folland, Real Analysis: Modern Techniques and Their Applications). Let X be locally
compact second countable Hausdorff space. Then every Borel measure on X that is finite on compact sets is
regular.

The measures we consider in this exercise are defined on subspaces X of Rk for some k ∈ N, which are
equipped with the subspace topology. In particular, if K ⊂ X is compact, then it is compact also in Rk.
Moreover, these measures (with the exception of part d)) are of the form f(x)dL(x), where dL denotes the
Lebesgue measure and f is some continuous function on X. Thus they are finite on compact sets and by the
above theorem they are regular.

a) Let us consider the three-dimensional Heisenberg group H = R⋊ηR2, where η : R→ Aut(R2) is defined
by

η(x)

(
y
z

)
=

(
y

z + xy

)
,

for all x, y, z ∈ R. Thus the group operation is given by

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2)

and it is easy to see that it can be identified with the matrix group

H ∼=


1 x z
0 1 y
0 0 1

 : x, y, z ∈ R


Verify that the Lebesgue measure is the Haar measure of R⋊η R2 and that the group is unimodular.
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Solution. Denote by µ the measure on H induced by the Lebesgue measure on R3. In order to show
that µ is unimodular we need to see that

µ(λ(h)f) = µ(f) = µ(ρ(h)f)

for every f ∈ Cc(H), h ∈ H.
Let h1 = (x1, y1, z1) ∈ H and f ∈ Cc(H). We compute

∫
(λ(h−1

1 )f)(x2, y2, z2)dx2dy2dz2

=

∫
f(x1 + x2, y1 + y2, z1 + z2 + x1y2)dx2dy2dz2

Fubini
=

∫
f(x1 + x2, y1 + y2, z2 + (z1 + x1y2))dz2dx2dy2

transl. inv.
=

∫
f(x1 + x2, y1 + y2, z2)dz2dx2dy2

F. & t.i.
=

∫
f(x1, y1 + y2, z2)dx2dy2dz2

F. & t.i.
=

∫
f(x1, y2, z2)dx2dy2dz2.

This shows left-invariance.

∫
(ρ(h1)f)(x2, y2, z2)dx2dy2dz2

=

∫
f(x2 + x1, y2 + y1, z2 + z1 + x2y1)dx2dy2dz2

Fubini
=

∫
f(x1 + x2, y1 + y2, z2 + (z1 + x2y1))dz2dx2dy2

transl. inv.
=

∫
f(x1 + x2, y1 + y2, z2)dz2dx2dy2

F. & t.i.
=

∫
f(x1, y1 + y2, z2)dx2dy2dz2

F. & t.i.
=

∫
f(x1, y2, z2)dx2dy2dz2.

This shows right-invariance. Therefore µ is a left- and right-invariant Haar measure on H and H is
unimodular.

b) Let

P =

{(
a b
0 a−1

)
: a, b ∈ R, a 6= 0

}
.

Show that da
a2 db is the left Haar measure and da db is the right Haar measure. In particular, P is not

unimodular.

Solution. Let
(
a b
0 a−1

)
∈ P and f ∈ Cc(P ). We compute
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∫ (
λ

((
a b
0 a−1

)−1
)
f

)(
x y
0 x−1

)
dx

x2
dy

=

∫
f

((
a b
0 a−1

)(
x y
0 x−1

))
dx

x2
dy

=

∫
f

(
ax ay + bx−1

0 a−1x−1

)
a2

dx

(ax)2
dy = . . .

we change coordinates to x̄ = ax, ȳ = ay which has Jacobi determinant a2

. . . =

∫
f

(
x̄ ȳ + abx̄−1

0 x̄−1

)
dx̄

x̄2
dȳ

=

∫
f

(
x̄ ȳ + abx̄−1

0 x̄−1

)
dȳ
dx̄

x̄2

=

∫
f

(
x̄ ȳ
0 x̄−1

)
dx̄

x̄2
dȳ.

This shows left-invariance for the measure dx
x2 dy as claimed.

We will now see that da db is right-invariant:

∫ (
ρ

((
a b
0 a−1

))
f

)(
x y
0 x−1

)
dxdy

=

∫
f

((
x y
0 x−1

)(
a b
0 a−1

))
dxdy

=

∫
f

((
ax bx+ a−1y
0 a−1x−1

))
dxdy = . . .

we change coordinates to x̄ = ax, ȳ = a−1y which has Jacobi determinant 1

. . . =

∫
f

((
x̄ ba−1x̄+ ȳ
0 x̄−1

))
dx̄dȳ

F & t.i
=

∫
f

((
x̄ ȳ
0 x̄−1

))
dx̄dȳ

This shows right-invariance. Since both measures clearly do not coincide P is not unimodular.

c) Let G := GLn(R) ⊆ Rn2 denote the group of invertible matrices over R. Let λn2 denote the Lebesgue
measure on Rn2 . Prove that

dm(x) := |detx|−n dλn2(x)

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution. As GLn(R) = det−1
(
R \ {0}

)
is open in Rn2 , λn2

∣∣
GLn(R)

assigns non-zero measure to non-
empty open and finite measure to compact subsets of GLn(R) (if K ⊆ GLn(R) is compact in GLn(R)
and U an open cover of K in Rn2 , then U ∩ GLn(R) := {U ∩ GLn(R);U ∈ U} is an open cover of K
in GLn(R), thus it admits a finite subcover and hence so does U). As det is continuous and does not
vanish on GLn(R), the above also holds for dm(g) := |detg|−n

dλn2(g).
It remains to show that m is invariant. To this end we note that for g ∈ GLn(R), if g = (g1, . . . , gn)
and h ∈ GLn(R), then

hg = (hg1, . . . , hg2) (g ∈ Matn(R)),
so that the left-action of h on GLn(R) can be viewed as a restriction of a diagonal matrix diag(h, . . . , h) ∈
Rn2×n2 acting on a subset of Rn2 . This means that for F : GLn(R)→ GLn(R), g 7→ F (g) := hg it holds

detDF (g) = (deth)n.
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Let f ∈ Cc

(
GLn(R)

)
, then∫

GLn(R)
f(hg) |detg|−n

dλn2(g) =

∫
GLn(R)

f(hg) |dethg|−n |deth|n dλn2(g)

(
ϕ(x) = f(x) |detx|−n )

=

∫
GLn(R)

ϕ(F (g)) |detDF (g)|n dλn2(g)

(change of variables) =

∫
F (GLn(R))

ϕ(y)dλn2(y)

=

∫
h·GLn(R)

f(y) |dety|−n
dλn2(y)

=

∫
GLn(R)

f(y) |dety|−n
dλn2(y).

This proves that m is a left Haar measure on GLn(R). The measure is also right-invariant, because the
map

g 7→

 g1h
...

gnh


does also have Jacobian |deth|n (for example because gh = (htgt)

t and the Jacobian of transposition –
being an idempotent map – is equal to 1). Thus GLn(R) is unimodular.

d) Let G = SLn(R) denote the group of matrices of determinant 1 in Rn×n. For a Borel subset B ⊆ SLn(R)
define

m(B) := λn2

(
{tg; g ∈ B, t ∈ [0, 1]}

)
.

Show that m is a well-defined bi-invariant Haar measure on SLn(R).

Solution. To check well-definedness we have to check that for any Borel subset B ⊆ SLn(R) the cone

C(B) = {tb : b ∈ B, t ∈ [0, 1]}

is a Borel subset of Rn2 . To this end we note first that

C(B) = C′(B) ∪ {0},

where
C′(B) = {tb : b ∈ B, t ∈ (0, 1]}.

It clearly suffices to show that C′(B) is Borel. To this end let

GL±1
n (R) = {g ∈ GLn(R); |detg| = 1}.

Note that GL±1
n (R) is homeomorphic to a disjoint union of two copies of SLn(R), in particular B is

Borel in GL±1
n (R). (As groups GL±1

n (R) ∼= SLn(R) ⋊ C2 , where C2 is the group with two elements.)
Define

Ψ : GLn(R)→ GL±1
n (R), g 7→ 1

n
√
|detg|

g.

This is a Borel map and therefore

C′(B) = Ψ−1(B) ∩ det−1(0, 1]

is measurable.

⊆ Let t ∈ (0, 1], and b ∈ B. Then x = tb satisfies det(x) = tndet(b) = tn ∈ (0, 1] and Ψ(x) = Ψ(tb) =
tb

n√tn
= b ∈ B. Thus tb ∈ Ψ−1(B) ∩ det−1(0, 1].

⊇ Let x ∈ Ψ−1(B) with det(x) ∈ (0, 1] and let b ∈ B be such that Ψ(x) = x
n
√

|det x|
= b. Then

x = n
√
|det x|b = tb with t = n

√
|det x| ∈ (0, 1].
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Thus we have λn2(C′(B)) is well-defined and we only have to check that m(B) = λn2(C′(B)) defines
a measure which is finite on compact sets. But this follows directly from the fact that B 7→ C′(B)
preserves intersections, unions, disjoint unions and compact sets.
The final claim now follows immediately from the argument in part c), which realizes the action of
an element g ∈ SLn(R) on Rn2 as a diagonal action of n copies of g, together with the fact that
Φ∗λn2 = |detΦ|λn2 for linear Φ, detg = 1, C(gB) = gC(B) and C(Bg) = C(B)g for all g ∈ SLn(R) and
B ⊆ SLn(R) Borel.

e) Let G denote the ax+ b group defined as

G =

{(
a b

1

)
; a ∈ R×, b ∈ R

}
Note that every element in G can be written in a unique fashion as a product of the form:(

a b
1

)
=

(
α

1

)(
1 β

1

)
where α ∈ R× and β ∈ R, which yields a coordinate system R× × R↔ G. Prove that

dm(α, β) =
1

|α|
dα dβ

defines a left Haar measure on G. Calculate ∆G(α, β) for α ∈ R× and β ∈ R.

Solution. We use the coordinate system ϕ : Aff1(R) 3 (a, b) 7→ (a, a−1b) ∈ R× × R. On R× × R we
define the measure dν(α, β) := 1

|α| dα dβ and we claim that (ϕ−1)∗ν is a left-Haar measure on Aff1(R).
For g ∈ G we denote as in the lecture λ(g), ρ(g) the left, resp. right, action of g on Cc(G).

Let f ∈ Cc

(
Aff1(R)

)
and let g =

(
x y
0 1

)
∈ Aff1(R). Then a computation shows

gϕ−1(α, β) =

(
xα xαβ + y
0 1

)
= ϕ−1(xα, β + (xα)−1y). (1)

and also
ϕ−1(α, β)g =

(
xα αy + αβ
0 1

)
= ϕ−1(αx, x−1y + x−1β). (2)

We check left-invariance:

λ∗(g)(ϕ−1
∗ ν)(f)

def
= (ϕ−1

∗ ν)(λ(g−1)f)
def
= ν

(
(λ(g−1)f) ◦ ϕ−1

)
def
=

∫
R×

∫
R
(λ(g−1)f) ◦ ϕ−1(α, β)dν(α, β)

def
=

∫
R×

(∫
R

f(g · ϕ−1(α, β)

|α|
dβ

)
dα

(1)
=

∫
R×

(∫
R

f ◦ ϕ−1(xα, β + (xα)−1y)

|α|
dβ

)
dα

dβ left-invariant→ =

∫
R×

(∫
R

f ◦ ϕ−1(xα, β)

|α|
dβ

)
dα

change of variables ψ(z, w) = (x−1z, w)→ =

∫
R×

(∫
R

f ◦ ϕ−1(z, w)

|x−1z|
|x−1|dw

)
dz

=

∫
R×

(∫
R

f ◦ ϕ−1(z, w)

|z|
dw

)
dz

def
=

∫
R×

∫
R
f ◦ ϕ−1(z, w)dν(z, w)

def
= (ϕ−1

∗ ν)(f)
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The modular function is determined by ∆G(g)(ϕ
−1
∗ ν)(f) = (ϕ−1

∗ ν)(ρ(g)f).

So for f ∈ Cc(G), g =

(
x y
0 1

)
we compute

(ϕ−1
∗ ν)(ρ(g)f) = ν

(
ρ(g)f ◦ ϕ−1

)
def
=

∫
R×

∫
R

(ρ(g)f) ◦ ϕ−1(α, β)

|α|
dβdα

def
=

∫
R×

∫
R

f(ϕ−1(α, β)g)

|α|
dβdα

(2)
=

∫
R×

∫
R

f ◦ ϕ−1(αx, x−1y + x−1β)

|α|
dβdα

dβ left-invariant→ =

∫
R×

∫
R

f ◦ ϕ−1(αx, x−1β)

|α|
dβdα

change of variables η(z, w) = (x−1z, xw)→ =

∫
R×

∫
R

f ◦ ϕ−1(z, w)

|x−1z|
dwdz

= |x|
∫
R×

∫
R

f ◦ ϕ−1(z, w)

|z|
dwdz

def
= |x|(ϕ−1

∗ ν)(f)

Therefore ∆Aff1(R)(

(
x y
0 1

)
) = |x|.

Exercise 3. Haar measures on profinite groups Let (I,≤) be a directed (index) set and let {f ji : Gj →
Gi | i ≤ j} be a projective system of discrete finite groups {Gi | i ∈ I}, i.e. f ji : Gj → Gi, i ≤ j, are group
homomorphisms such that f ji ◦ fkj = fki for all i ≤ j ≤ k. We define its inverse limit as the subgroup

lim←−Gi :=

{
(gi)i∈I ∈

∏
i∈I

Gi

∣∣∣∣ f ji (gj) = gi ∀i ≤ j

}
⊆
∏
i∈I

Gi.

The inverse limit lim←−Gi is a closed subgroup of the compact group
∏

i∈I Gi and thus it is compact, too. Any
topological group that is the inverse limit of a projective system of discrete finite groups is called a profinite
group.

Let G = lim←−Gi be a profinite group and denote πj : G→ Gj , (gi)i∈I 7→ gj for every j ∈ I.

1) Show that the kernels {Kj := ker(πj)}j∈I form a neighborhood basis of the identity consisting of
compact open sets.
Remark: This shows that every profinite group is locally compact.

Solution. Clearly idG ∈ Kj for all j ∈ I. Further, if (gi)i∈I ∈ Kj , then gj = IdGj
which in particular

implies gi = idGi
for every i ≤ j, by the compatibility condition f ji (gj) = gi ∀i ≤ j defining the

inverse limit. Since {IdGj
} is an open set in Gj and πj is continuous, the sets Kj are open sets. In fact,

Kj = (
∏

i∈F {idGi} ×
∏

i∈I\F Gi) ∩G = ∩i∈F ({idGi} ×
∏

i∈I\{i}Gi) ∩G, where F = {i ∈ I | i ≤ j}, is
the intersection of compact sets and thus also compact.
By definition of the product topology on

∏
i∈I Gi, the neighborhood base of idG is given by all sets of

the form (
∏

i∈F Ui ×
∏

i∈I\F Gi) ∩ G where F ⊂ I is finite and idGi
∈ Ui ⊂ Gi are open sets for all

i ∈ F . Fix such an open set and let j ∈ I be an upper bound for F , that is, i ≤ j for all i ∈ F . Then

Kj ⊆ (
∏
i∈F

Ui ×
∏

i∈I\F

Gi) ∩G,

since every element (gi)i∈I ∈ Kj satisfies gi = idGi for every i ≤ j and thus gi ∈ Ui for all i ∈ F and
gi ∈ Gi for all i ∈ I \ F .
Thus, {Kj := ker(πj)}j∈I form a neighborhood basis of the identity consisting of compact open sets.
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2) Let µ be a Haar measure on G normalized such that µ(G) = 1.
Show that

µ(Kj) =
1∣∣G : Kj

∣∣ = 1

|im(πj)|
.

Solution. Fix j ∈ I and look at the exact sequence

1→ Kj ↪→ G
πj−→ im(πj)→ 1.

For every gi ∈ im(πj) ⊆ Gj we pick a preimage xi = π−1
j (gi) which gives a set X := {xi}gi∈im(πj) of

coset representatives of G/Kj ' im(πj). We deduce that

1 = µ(G) = µ

( ⊔
x∈X

xKj

)
=
∑
x∈X

µ(xKj) = |im(πj)|µ(Kj),

where the last equality follows by (left-) invariance of the (left) Haar measure. Thus, we obtain

µ(Kj) =
1

|im(πj)|
=

1∣∣G : Kj

∣∣ .
3) Let Zp = lim←−Z/pnZ be the p-adic integers, let µ be a normalized Haar measure, and set Cm :=
{(ai)i∈N ∈ Zp | 0 = a1, . . . , 0 = am}.
Compute µ(Cm) using part 2.

Solution. Note that Cm is equal to ker(πm) where πm : Zp → Z/pmZ. By part 2 we get

µ(Cm) =
1

|im(πm)|
=

1

pm

since πm is surjective. Indeed, for every x ∈ Z/pmZ we can consider any lift y ∈ Z and define ai = y
mod pi for all i ∈ N, then (ai)i∈N ∈ Zp satisfies πm((ai)i∈N) = y mod pm = x.

Exercise 4 (Aut(Rn,+) ∼= GL(n,R)). For a topological group G, we denote by Aut(G) the group of
bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact Hausdorff
group G = (Rn,+) where n ∈ N0.

a) Show that Aut(G), i.e. the group of bijective homomorphisms which are homeomorphisms as well, is
given by GLn(R).

Solution. Let ϕ ∈ Aut(Rn), then ϕ is in particular additive and thus ϕ(kv) = kϕ(v) for all v ∈ Rn,
for all k ∈ Z. Let m ∈ Z, n ∈ N and q = m

n ∈ Q, then

nϕ(qv) = ϕ(nqv) = ϕ(mv) = mϕ(v) =⇒ ϕ(q)ϕ(v) = qϕ(v)

and ϕ is Q-linear. R-linearity follows from continuity of ϕ and thus ϕ ∈ EndR(Rn). As ϕ is invertible,
any choice of basis realizes ϕ as an element in GLn(R). It is clear that for such a choice of a basis, any
g ∈ GLn(R) defines an element in Aut(Rn) and that the correspondence is 1-1 and obeys the various
group structures (on Aut(G) and GLn(R)).

b) Show that mod : Aut(G)→ R>0 is given by α 7→ |detα|.

Solution. The n-dimensional Lebesgue measure λn on Rn clearly is a Haar measure for Rn: it is
translation invariant and

λn
(
Br(v)

)
=

(
√
πr)n

Γ(n2 + 1)
∈ (0,∞) (r > 0, v ∈ Rn),
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showing that it is positive on open and finite on compact subsets of Rn. Let f ∈ Cc(Rn), g ∈ GLn(R).
We check that λn(g−1 · f) = |det g|−1

λn(f):

λn(g
−1f) =

∫
Rn

f(gv) dλn(v) =
1

|detg|

∫
Rn

f(gv) |detg| dλn(v)

change of variables→ = |detg|−1
∫
Rn

f(v) dλn(v)

= |detg|−1
λn(f).

c) Prove that there exists a discontinuous, bijective homomorphism from the additive group (R,+) to
itself.

Solution. Using Zorn’s lemma, construct a Q-basis of R containing 1. Denote this basis by {xi; i ∈ I}
for any infinite index set I containing 0 such that x0 = 1 (I is infinite as otherwise R would be algebraic
over Q). Fix i, j ∈ I \ {0} such that i 6= j and define a linear map ϕ : R→ R by Q-linear extension of

∀k ∈ I : ϕ(xk) =


xj if k = i,

xi if k = j,

xk else.

Then ϕ is a homomorphism by definition and is the identity on Q. Since every real number is the limit
of a Q-Cauchy sequence1, let (qn)n∈N ∈ QN Cauchy such that limn→∞ qn = xi, then

lim
n→∞

ϕ(qn) = lim
n→∞

qn = xi 6= xj = ϕ(xi) = ϕ( lim
n→∞

qn).

1For example: given x ∈ R take qn :=
⌊nx⌋
n

∈ Q, so that nx−1
n

≤ qn ≤ nx
n

.
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