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Solutions of Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and p : Gx X —
X a continuous transitive group action, i.e. for any two x,y € X there is g € G such that u(g,z) =g -z =y.

a) Show that if G is compact then X is compact.
b) Show that if G is connected then X is connected.
Solution. Let xy € X and consider the map
p:G— X,
g = p(g, xo)-

Because p is a continuous action the map ¢ is continuous too. Further the action p is transitive, i.e. for every
y € X there is a g € G such that u(g, o) = y. In other words, ¢ is surjective.

Part a) follows from the fact that X = ¢(G) is compact as the image of a compact group.

Part b) follows from the fact that continuous maps send connected components to connected components
and again that ¢(G) = X.

Exercise 2 (Examples of Haar Measures). We start with a general remark about the regularity of the
measures in the exercise.

Theorem (Thm 7.8 in Folland, Real Analysis: Modern Techniques and Their Applications). Let X be locally
compact second countable Hausdorff space. Then every Borel measure on X that is finite on compact sets is
regular.

The measures we consider in this exercise are defined on subspaces X of RF for some k € N, which are
equipped with the subspace topology. In particular, if K C X is compact, then it is compact also in R¥.
Moreover, these measures (with the exception of part d)) are of the form f(z)dL(z), where dL denotes the
Lebesgue measure and f is some continuous function on X. Thus they are finite on compact sets and by the
above theorem they are regular.

a) Let us consider the three-dimensional Heisenberg group H = R x,,R?, where n : R — Aut(R?) is defined

by
0 ()-(.2,)

for all z,y, z € R. Thus the group operation is given by

(1,91, 21) * (T2, Y2, 22) = (1 + T2, Y1 + Y2, 21 + 22 + T1%2)

and it is easy to see that it can be identified with the matrix group

1
H= 0 tx,y,z €R
0

O = 8
Ll SR\

Verify that the Lebesgue measure is the Haar measure of R x,, R? and that the group is unimodular.



Solution. Denote by p the measure on H induced by the Lebesgue measure on R3. In order to show
that p is unimodular we need to see that

for every f € C.(H), h € H.
Let hy = (z1,41,21) € H and f € C.(H). We compute

/ (A ) ) (2, o 22) dmadyndzs

= /f($1 + x2,y1 + Y2, 21 + 22 + x1Yy2)drodysdzs

Fubini
= /f(xl + 22, y1 + Y2, 22 + (21 + 21Y2) )d2adxadys

tran<1 inv.

/f Ty + T2, Y1 + Y2, 22)dz2dradys

||2°

/f (21, 31 + Y2, 22)dzadyadzy

||f<°

/f T1, Y2, 22)dradyadzy.
This shows left-invariance.

/(p(/h)f)(u,yz, z9)dxadyadzy

= /f(xz + x1,Y2 + Y1, 22 + 21 + 22y1 )dradyadzs

Fubini
= /f(ml + 22, y1 + Y2, 22 + (21 + @21 ) )dzadxadys

transl inv.

/f Ty + 2, y1 + Y2, 22)dzadradys

||2°

/f (21, 31 + Y2, 22)dzadyadzy

||f<°

/f T1,Y2, 22)dradysdzy.

This shows right-invariance. Therefore p is a left- and right-invariant Haar measure on H and H is
unimodular.

b) Let

P—{(g aﬁl) :a,beR,a#O}.

Show that ‘i—‘; db is the left Haar measure and da db is the right Haar measure. In particular, P is not
unimodular.

Solution. Let (g ai) € P and f € C.(P). We compute



s
we change coordinates to T = ax, j = ay which has Jacobi determinant a?
= /f <§ y +$‘L_bf”1> %dg
_ /f (sg y +jabla‘71> dg%
_ /f (g jyl) ;_l—fdg.

This shows left-invariance for the measure j—g dy as claimed.

We will now see that da db is right-invariant:

JO((2))0) (@ )
(6 26 2

/f <<“0“3 bijg:iy» dedy = ...

y = a~ 'y which has Jacobi determinant 1
..:/f((g" ba_;x1+y>)dxdy
(s 2o

This shows right-invariance. Since both measures clearly do not coincide P is not unimodular.

we change coordinates to T = az,

Let G := GL,(R) C R"" denote the group of invertible matrices over R. Let A,> denote the Lebesgue
measure on R"". Prove that

dm(x) := |detz|™" dA,2(z)
defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution. As GL,(R) = det™ (R {0}) is open in R™, A2 |GLH(R)
empty open and finite measure to compact subsets of GL,,(R) (if K C GL,(R) is compact in GL,(R)
and U an open cover of K in R" | then U N GL,(R) := {U N GL,(R); U € U} is an open cover of K
in GL,(R), thus it admits a finite subcover and hence so does U). As det is continuous and does not
vanish on GL,,(R), the above also holds for dm(g) := |detg| " d\,2(g).

It remains to show that m is invariant. To this end we note that for g € GL,(R), if ¢ = (g1,...,9n)
and h € GL,(R), then

assigns non-zero measure to non-

hg = (hg1,...,hg2) (g € Mat,(R)),
so that the left-action of h on GL,,(R) can be viewed as a restriction of a diagonal matrix diag(h,...,h) €
R™**"* acting on a subset of R"”. This means that for F : GL, (R) —» GL,(R),g — F(g) := hg it holds

detDF'(g) = (deth)™.



Let f € Cc(GL,(R)), then
/ £(hg) [detg|™ dAys(g) = / F(hg) |dethg| ™" [deth|™ 2 (g)
GL, (R) GL, (R
(o) = f(z) [deta] ™) = / o(F(g)) |detDF (g)|" dAnz (g)
GL..(R)

(change of variables) :/ e(y)dAn2(y)
F(GL

This proves that m is a left Haar measure on GL,,(R). The measure is also right-invariant, because the
map
gih
g
gnh
does also have Jacobian |deth|” (for example because gh = (h'g")" and the Jacobian of transposition —

being an idempotent map — is equal to 1). Thus GL,,(R) is unimodular.

d) Let G = SL,,(R) denote the group of matrices of determinant 1 in R"*™. For a Borel subset B C SL,,(R)
define
m(B) := A2 ({tg; g € B,t € [0,1]}).

Show that m is a well-defined bi-invariant Haar measure on SL,, (R).

Solution. To check well-definedness we have to check that for any Borel subset B C SL, (R) the cone
C(B)={th:be B,t €[0,1]}
is a Borel subset of R"". To this end we note first that
C(B) =c'(B) u{0},

where
C'(B)={tb:be B,t € (0,1]}.

It clearly suffices to show that C’'(B) is Borel. To this end let
GL; ' (R) = {g € GL,(R); |detg| = 1}.

Note that GLE'(R) is homeomorphic to a disjoint union of two copies of SLy,(R), in particular B is
Borel in GLE!(R). (As groups GLE'(R) 2 SL,,(R) x Cy , where Cj is the group with two elements.)

Define
1

.,
V/|detg]

¥ : GL,(R) = GLEY(R), g~

This is a Borel map and therefore
C'(B) =¥~ Y(B)ndet™(0,1]
is measurable.

C Lett € (0,1], and b € B. Then z = tb satisfies det(x) = t"det(b) = t"™ € (0,1] and U (z) = U(tb) =

@ = b€ B. Thus tb € ¥~'(B) Ndet ™ (0,1].

Let x € U=!(B) with det(z) € (0,1] and let b € B be such that ¥(z) = ’{/Ijicﬁ = b. Then
x = {/|det z|b = tb with t = {/|det z| € (0, 1].

V)




Thus we have A,2(C’(B)) is well-defined and we only have to check that m(B) = \,2(C’'(B)) defines
a measure which is finite on compact sets. But this follows directly from the fact that B — C'(B)
preserves intersections, unions, disjoint unions and compact sets.

The final claim now follows immediately from the argument in part c), which realizes the action of

an element g € SL,(R) on R™ as a diagonal action of n copies of g, together with the fact that
D, A\,2 = |det®| A,z for linear @, detg = 1, C(gB) = gC(B) and C(Bg) = C(B)g for all g € SL,(R) and
B C SL,,(R) Borel.

Let G denote the ax + b group defined as

G-{(“ ’{);aeRX,beR}

Note that every element in G' can be written in a unique fashion as a product of the form:

a b\ [« 1 B
1) 1 1
where a« € R* and 8 € R, which yields a coordinate system R* x R <+ G. Prove that

idadﬂ
|al

defines a left Haar measure on G. Calculate Ag(a, ) for « € R* and 8 € R.

dm(av ﬁ) =

Solution. We use the coordinate system ¢ : Aff;(R) 5 (a,b) — (a,a7tb) € R* x R. On R* x R we
define the measure dv(a, B) := 15 | L da df and we claim that (¢~1),v is a left-Haar measure on Aff; (R).

For g € G we denote as in the lecture )\( ), p(g) the left, resp. right, action of g on C.(G).

Let f € C.(Aff1(R)) and let g = (I

0 1) € Aff1(R). Then a computation shows

g¢ (@, 8) = (xo‘“ o y) = ¢ (wa, B+ (xa) Ty). (1)

and also

N @)@ )0 OGN (O 0w
def -1 o Ha V(o
Y[ [ow e @nane.

def flg- ¢~ e, B) )

= d
L (Rt

o [ ([ Lottty )
R* \JR |ov|

dpB left-invariant - = / < foy |a(|xoc, b) dﬁ) do
rx \JR
change of variables ¢(z,w) = (z7 2z, w) = = / < fo T;ll(zz’ w) |x1|dw> dz

RX

def o _1zw Vzwdéf 1y
—/RX/Rf o w)dv(zw) " (e w)(f)



The modular function is determined by Ag(g)(ox'v)(f) = (05 'v)(p(9)f).
So for f € C.(G),g = (g Z{) we compute

(it =v(p(g)fo
—1

d;f / p g (Oé?B) dﬁdo&
rx JR

= / / I )dﬂda
R* JR

i/ / 0“”| WAT0) o

—1
df left-invariant — = / (az, 27 ) dBdo
change of variables 1(z, w) = (z 7'z, zw) — / / fo | 1 | d dz

RX Tz

—1(
= |z / fo ('0 ( d dz
RX
def
[2|(o3 ') (f)
Therefore AAﬁl(R)((g 21/>) = |z|.
Exercise 3. Haar measures on profinite groups Let (I, <) be a directed (index) set and let {f/: G; —

G;|i < j} be a projective system of discrete finite groups {G;|i € I}, i.e. fj G; — G;,i < j, are group
homomorphisms such that f] fk fF for all i < j < k. We define its inverse limit as the subgroup

) =g ¥i <j} cl]G:

i€l

lim G; = {(gi)iel Sl ket

icl
The inverse limit lim G is a closed subgroup of the compact group [[,.; Gi and thus it is compact, too. Any

topological group that is the inverse limit of a projective system of discrete finite groups is called a profinite
group.

Let G = @Gi be a profinite group and denote 7;: G — Gj, (gi)ier + g; for every j € I.

1) Show that the kernels {K; := ker(7;)};er form a neighborhood basis of the identity consisting of
compact open sets.

Remark: This shows that every profinite group is locally compact.

Solution. Clearly idgs € K for all j € I. Further, if (g;)ie; € K}, then g; = Idg, which in particular
implies g; = idg, for every ¢ < j, by the compatibility condition flj (9;) = g; Yi < j defining the
inverse limit. Since {Idg;, } is an open set in G; and 7; is continuous, the sets K; are open sets. In fact,
Kj = ([Lep{ida, } % HieI\F Gi) NG = Nicr({idg, } x Hie[\{i} Gi) NG, where F'={i €l |i<j},is
the intersection of compact sets and thus also compact.

By definition of the product topology on [[,.; Gi, the neighborhood base of idg is given by all sets of
the form (J[,cp Ui x HieI\F G;) NG where F C I is finite and idg, € U; C G; are open sets for all
i € F. Fix such an open set and let j € I be an upper bound for F', that is, ¢ < j for all i € F.. Then

Kj - (HUl X H Gi)ﬂé,
ieF i€EI\F

since every element (g;);er € K satisfies g; = idg, for every ¢ < j and thus ¢g; € U; for all i € F and
gi €GforallieI\F.
Thus, {K; = ker(7;)},er form a neighborhood basis of the identity consisting of compact open sets.



2)

3)

Let 41 be a Haar measure on G normalized such that u(G) = 1.

Show that
1 1

TG K| @)

n(K;)
Solution. Fix j € I and look at the exact sequence
15 K; < G 25 im(7;) — 1.

For every g; € im(7;) C G, we pick a preimage x; = ﬁj_l(gi) which gives a set X := {Zi} g, cim(z,) of
coset representatives of G/K; ~ im(7;). We deduce that

1=u(G)=p ( L] ij) = > plek;) = [im(T))| u(K;),

zeX zeX
where the last equality follows by (left-) invariance of the (left) Haar measure. Thus, we obtain

1

M) = Tl G K

Let Z, = imZ/p"Z be the p-adic integers, let 1 be a normalized Haar measure, and set Cp, =
{(ai)ieN S p|0:a1,...,O:am}.
Compute p(Cy,) using part 2.

Solution. Note that C,, is equal to ker(7,,) where T,,: Z, — Z/p™Z. By part 2 we get

1 1

S TN

since T, is surjective. Indeed, for every x € Z/p™Z we can consider any lift y € Z and define a; = y
mod p* for all ¢ € N, then (a;)ien € Zj, satisfies Tp, ((@)ien) =y mod p™ = z.

Exercise 4 (Aut(R™,+) = GL(n,R)). For a topological group G, we denote by Aut(G) the group of
bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact Hausdorff
group G = (R™, +) where n € Ny.

2)

Show that Aut(G), i.e. the group of bijective homomorphisms which are homeomorphisms as well, is
given by GL,(R).

Solution. Let ¢ € Aut(R™), then ¢ is in particular additive and thus ¢(kv) = kp(v) for all v € R™,
forall k € Z. Let m € Z,n € Nand g = 7* € Q, then

np(qu) = p(ngv) = p(mv) = mp(v) = »(q)r(v) = qp(v)

and ¢ is Q-linear. R-linearity follows from continuity of ¢ and thus ¢ € Endg(R"™). As ¢ is invertible,
any choice of basis realizes ¢ as an element in GL,,(R). It is clear that for such a choice of a basis, any
g € GL,(R) defines an element in Aut(R™) and that the correspondence is 1-1 and obeys the various
group structures (on Aut(G) and GL,(R)).

Show that mod : Aut(G) — R is given by o — |deta|.

Solution. The n-dimensional Lebesgue measure A, on R™ clearly is a Haar measure for R™: it is
translation invariant and
(V)"

An (Br(v)) = m € (0,00) (r>0,veR"?),



showing that it is positive on open and finite on compact subsets of R™. Let f € C.(R"), g € GL,(R).
We check that A,(g7! - f) = |det g| ™" Ao (f):

1
M(g™hf) = vd)\nvzi/ v) |detg| dA, (v
(07 f) = | Slovydn(v) = g | Flgv)Idetg] dAn(v)
change of variables — = |detg| ™" f(v)dh,(v)
Rn
= |detg| ™" Au(f).

Prove that there exists a discontinuous, bijective homomorphism from the additive group (R,+) to
itself.

Solution. Using Zorn’s lemma, construct a Q-basis of R containing 1. Denote this basis by {z;;i € I'}
for any infinite index set I containing 0 such that o = 1 (I is infinite as otherwise R would be algebraic
over Q). Fix i,j € I'\ {0} such that ¢ # j and define a linear map ¢ : R — R by Q-linear extension of

(Ej lf k= i,
Vkel:p(xy) =<z ifk=jy,
xrp  else.

Then ¢ is a homomorphism by definition and is the identity on Q. Since every real number is the limit
of a Q-Cauchy sequence!, let (gn)nen € QY Cauchy such that lim,, ., g, = x4, then

lim o(gn) = lim g, = z; # z; = p(z;) = ( im_gs).

n—r oo n—0o0

IFor example: given x € R take g, = lne) o Q, so that %71 <gn < TE

n



