Solutions of Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and $\mu : G \times X \to X$ a continuous transitive group action, i.e. for any two $x, y \in X$ there is $g \in G$ such that $\mu(g, x) = g \cdot x = y$.

- a) Show that if G is compact then X is compact.
- b) Show that if G is connected then X is connected.

Solution. Let $x_0 \in X$ and consider the map

$$\begin{split} \varphi: G \to X, \\ g \mapsto \mu(g, x_0). \end{split}$$

Because μ is a continuous action the map φ is continuous too. Further the action μ is transitive, i.e. for every $y \in X$ there is a $g \in G$ such that $\mu(g, x_0) = y$. In other words, φ is surjective.

Part a) follows from the fact that $X = \varphi(G)$ is compact as the image of a compact group.

Part b) follows from the fact that continuous maps send connected components to connected components and again that $\varphi(G) = X$.

Exercise 2 (Examples of Haar Measures). We start with a general remark about the regularity of the measures in the exercise.

Theorem (Thm 7.8 in Folland, Real Analysis: Modern Techniques and Their Applications). Let X be locally compact second countable Hausdorff space. Then every Borel measure on X that is finite on compact sets is regular.

The measures we consider in this exercise are defined on subspaces X of \mathbb{R}^k for some $k \in \mathbb{N}$, which are equipped with the subspace topology. In particular, if $K \subset X$ is compact, then it is compact also in \mathbb{R}^k . Moreover, these measures (with the exception of part d)) are of the form $f(x)d\mathcal{L}(x)$, where $d\mathcal{L}$ denotes the Lebesgue measure and f is some continuous function on X. Thus they are finite on compact sets and by the above theorem they are regular.

a) Let us consider the *three-dimensional Heisenberg group* $H = \mathbb{R} \rtimes_{\eta} \mathbb{R}^2$, where $\eta : \mathbb{R} \to \operatorname{Aut}(\mathbb{R}^2)$ is defined by

$$\eta(x)\begin{pmatrix} y\\z\end{pmatrix} = \begin{pmatrix} y\\z+xy\end{pmatrix},$$

for all $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$(x_1, y_1, z_1) * (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)$$

and it is easy to see that it can be identified with the matrix group

$$H \cong \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

Verify that the Lebesgue measure is the Haar measure of $\mathbb{R} \rtimes_n \mathbb{R}^2$ and that the group is unimodular.

Solution. Denote by μ the measure on H induced by the Lebesgue measure on \mathbb{R}^3 . In order to show that μ is unimodular we need to see that

$$\mu(\lambda(h)f) = \mu(f) = \mu(\rho(h)f)$$

for every $f \in C_c(H)$, $h \in H$. Let $h_1 = (x_1, y_1, z_1) \in H$ and $f \in C_c(H)$. We compute

$$\begin{split} &\int (\lambda(h_1^{-1})f)(x_2, y_2, z_2) dx_2 dy_2 dz_2 \\ &= \int f(x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1 y_2) dx_2 dy_2 dz_2 \\ & \stackrel{\text{Fubini}}{=} \int f(x_1 + x_2, y_1 + y_2, z_2 + (z_1 + x_1 y_2)) dz_2 dx_2 dy_2 \\ & \stackrel{\text{transl. inv.}}{=} \int f(x_1 + x_2, y_1 + y_2, z_2) dz_2 dx_2 dy_2 \\ & \stackrel{\text{F. \& t.i.}}{=} \int f(x_1, y_1 + y_2, z_2) dx_2 dy_2 dz_2 \\ & \stackrel{\text{F. \& t.i.}}{=} \int f(x_1, y_2, z_2) dx_2 dy_2 dz_2. \end{split}$$

This shows left-invariance.

$$\begin{split} &\int (\rho(h_1)f)(x_2, y_2, z_2)dx_2dy_2dz_2 \\ &= \int f(x_2 + x_1, y_2 + y_1, z_2 + z_1 + x_2y_1)dx_2dy_2dz_2 \\ & \text{Fubini} \int f(x_1 + x_2, y_1 + y_2, z_2 + (z_1 + x_2y_1))dz_2dx_2dy_2 \\ & \text{transl. inv.} \int f(x_1 + x_2, y_1 + y_2, z_2)dz_2dx_2dy_2 \\ & \text{F. & & \pm t.i.} \int f(x_1, y_1 + y_2, z_2)dx_2dy_2dz_2 \\ & \text{F. & & & \pm t.i.} \int f(x_1, y_2, z_2)dx_2dy_2dz_2. \end{split}$$

This shows right-invariance. Therefore μ is a left- and right-invariant Haar measure on H and H is unimodular.

b) Let

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a, b \in \mathbb{R}, a \neq 0 \right\}.$$

Show that $\frac{da}{a^2} db$ is the left Haar measure and da db is the right Haar measure. In particular, P is not unimodular.

Solution. Let $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in P$ and $f \in C_c(P)$. We compute

$$\int \left(\lambda \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}^{-1} \right) f \right) \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \frac{dx}{x^2} dy$$
$$= \int f \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \right) \frac{dx}{x^2} dy$$
$$= \int f \begin{pmatrix} ax & ay + bx^{-1} \\ 0 & a^{-1}x^{-1} \end{pmatrix} a^2 \frac{dx}{(ax)^2} dy = \dots$$

we change coordinates to $\bar{x} = ax, \bar{y} = ay$ which has Jacobi determinant a^2

$$\dots = \int f \begin{pmatrix} \bar{x} & \bar{y} + ab\bar{x}^{-1} \\ 0 & \bar{x}^{-1} \end{pmatrix} \frac{d\bar{x}}{\bar{x}^2} d\bar{y}$$
$$= \int f \begin{pmatrix} \bar{x} & \bar{y} + ab\bar{x}^{-1} \\ 0 & \bar{x}^{-1} \end{pmatrix} d\bar{y} \frac{d\bar{x}}{\bar{x}^2}$$
$$= \int f \begin{pmatrix} \bar{x} & \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix} \frac{d\bar{x}}{\bar{x}^2} d\bar{y}.$$

This shows left-invariance for the measure $\frac{dx}{x^2} dy$ as claimed. We will now see that da db is right-invariant:

$$\int \left(\rho \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right) f \right) \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} dx dy$$
$$= \int f \left(\begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right) dx dy$$
$$= \int f \left(\begin{pmatrix} ax & bx + a^{-1}y \\ 0 & a^{-1}x^{-1} \end{pmatrix} \right) dx dy = \dots$$

we change coordinates to $\bar{x} = ax, \bar{y} = a^{-1}y$ which has Jacobi determinant 1

$$\dots = \int f\left(\begin{pmatrix} \bar{x} & ba^{-1}\bar{x} + \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix}\right) d\bar{x}d\bar{y}$$

$$\stackrel{\mathrm{F} \& \mathrm{t.i}}{=} \int f\left(\begin{pmatrix} \bar{x} & \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix}\right) d\bar{x}d\bar{y}$$

This shows right-invariance. Since both measures clearly do not coincide P is not unimodular.

c) Let $G := \operatorname{GL}_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$ denote the group of invertible matrices over \mathbb{R} . Let λ_{n^2} denote the Lebesgue measure on \mathbb{R}^{n^2} . Prove that

$$\mathrm{d}m(x) := |\mathrm{det}x|^{-n} \,\mathrm{d}\lambda_{n^2}(x)$$

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution. As $\operatorname{GL}_n(\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ is open in \mathbb{R}^{n^2} , $\lambda_{n^2}|_{\operatorname{GL}_n(\mathbb{R})}$ assigns non-zero measure to nonempty open and finite measure to compact subsets of $\operatorname{GL}_n(\mathbb{R})$ (if $K \subseteq \operatorname{GL}_n(\mathbb{R})$ is compact in $\operatorname{GL}_n(\mathbb{R})$ and \mathcal{U} an open cover of K in \mathbb{R}^{n^2} , then $\mathcal{U} \cap \operatorname{GL}_n(\mathbb{R}) := \{U \cap \operatorname{GL}_n(\mathbb{R}); U \in \mathcal{U}\}$ is an open cover of Kin $\operatorname{GL}_n(\mathbb{R})$, thus it admits a finite subcover and hence so does \mathcal{U}). As det is continuous and does not vanish on $\operatorname{GL}_n(\mathbb{R})$, the above also holds for $dm(g) := |\det g|^{-n} d\lambda_{n^2}(g)$.

It remains to show that m is invariant. To this end we note that for $g \in GL_n(\mathbb{R})$, if $g = (g_1, \ldots, g_n)$ and $h \in GL_n(\mathbb{R})$, then

$$hg = (hg_1, \dots, hg_2) \quad (g \in \operatorname{Mat}_n(\mathbb{R})),$$

so that the left-action of h on $\operatorname{GL}_n(\mathbb{R})$ can be viewed as a restriction of a diagonal matrix $\operatorname{diag}(h, \ldots, h) \in \mathbb{R}^{n^2 \times n^2}$ acting on a subset of \mathbb{R}^{n^2} . This means that for $F : \operatorname{GL}_n(\mathbb{R}) \to \operatorname{GL}_n(\mathbb{R}), g \mapsto F(g) \coloneqq hg$ it holds

$$\det DF(g) = (\det h)^n$$

Let $f \in C_c(\operatorname{GL}_n(\mathbb{R}))$, then

$$\begin{split} \int_{\mathrm{GL}_n(\mathbb{R})} f(hg) |\det g|^{-n} d\lambda_{n^2}(g) &= \int_{\mathrm{GL}_n(\mathbb{R})} f(hg) |\det hg|^{-n} |\det h|^n d\lambda_{n^2}(g) \\ \left(\varphi(x) &= f(x) |\det x|^{-n}\right) &= \int_{\mathrm{GL}_n(\mathbb{R})} \varphi(F(g)) |\det DF(g)|^n d\lambda_{n^2}(g) \\ (\text{change of variables}) &= \int_{F(\mathrm{GL}_n(\mathbb{R}))} \varphi(y) d\lambda_{n^2}(y) \\ &= \int_{h \cdot \mathrm{GL}_n(\mathbb{R})} f(y) |\det y|^{-n} d\lambda_{n^2}(y) \\ &= \int_{\mathrm{GL}_n(\mathbb{R})} f(y) |\det y|^{-n} d\lambda_{n^2}(y). \end{split}$$

This proves that m is a left Haar measure on $\operatorname{GL}_n(\mathbb{R})$. The measure is also right-invariant, because the map

$$g \mapsto \left(\begin{array}{c} g_1h\\ \vdots\\ g_nh \end{array}\right)$$

does also have Jacobian $|\det h|^n$ (for example because $gh = (h^t g^t)^t$ and the Jacobian of transposition – being an idempotent map – is equal to 1). Thus $\operatorname{GL}_n(\mathbb{R})$ is unimodular.

d) Let $G = SL_n(\mathbb{R})$ denote the group of matrices of determinant 1 in $\mathbb{R}^{n \times n}$. For a Borel subset $B \subseteq SL_n(\mathbb{R})$ define

$$m(B) := \lambda_{n^2} \big(\{ tg; g \in B, t \in [0,1] \} \big).$$

Show that m is a well-defined bi-invariant Haar measure on $SL_n(\mathbb{R})$.

Solution. To check well-definedness we have to check that for any Borel subset $B \subseteq SL_n(\mathbb{R})$ the cone

$$\mathcal{C}(B) = \{tb : b \in B, t \in [0,1]\}\$$

is a Borel subset of \mathbb{R}^{n^2} . To this end we note first that

$$\mathcal{C}(B) = \mathcal{C}'(B) \cup \{0\},\$$

where

$$\mathcal{C}'(B) = \{tb : b \in B, t \in (0,1]\}.$$

It clearly suffices to show that $\mathcal{C}'(B)$ is Borel. To this end let

$$\operatorname{GL}_{n}^{\pm 1}(\mathbb{R}) = \{ g \in \operatorname{GL}_{n}(\mathbb{R}); |\det g| = 1 \}.$$

Note that $\operatorname{GL}_{n}^{\pm 1}(\mathbb{R})$ is homeomorphic to a disjoint union of two copies of $\operatorname{SL}_{n}(\mathbb{R})$, in particular *B* is Borel in $\operatorname{GL}_{n}^{\pm 1}(\mathbb{R})$. (As groups $\operatorname{GL}_{n}^{\pm 1}(\mathbb{R}) \cong \operatorname{SL}_{n}(\mathbb{R}) \rtimes C_{2}$, where C_{2} is the group with two elements.) Define

$$\Psi: \mathrm{GL}_n(\mathbb{R}) \to \mathrm{GL}_n^{\pm 1}(\mathbb{R}), \quad g \mapsto \frac{1}{\sqrt[n]{|\det g|}}g.$$

This is a Borel map and therefore

$$\mathcal{C}'(B) = \Psi^{-1}(B) \cap \det^{-1}(0, 1]$$

is measurable.

- $\subseteq \text{ Let } t \in (0,1], \text{ and } b \in B. \text{ Then } x = tb \text{ satisfies } \det(x) = t^n \det(b) = t^n \in (0,1] \text{ and } \Psi(x) = \Psi(tb) = \frac{tb}{\sqrt[n]{t^n}} = b \in B. \text{ Thus } tb \in \Psi^{-1}(B) \cap \det^{-1}(0,1].$
- $\supseteq \text{ Let } x \in \Psi^{-1}(B) \text{ with } \det(x) \in (0,1] \text{ and let } b \in B \text{ be such that } \Psi(x) = \frac{x}{\sqrt[n]{|\det x|}} = b. \text{ Then } x = \sqrt[n]{|\det x|}b = tb \text{ with } t = \sqrt[n]{|\det x|} \in (0,1].$

Thus we have $\lambda_{n^2}(\mathcal{C}'(B))$ is well-defined and we only have to check that $m(B) = \lambda_{n^2}(\mathcal{C}'(B))$ defines a measure which is finite on compact sets. But this follows directly from the fact that $B \mapsto \mathcal{C}'(B)$ preserves intersections, unions, disjoint unions and compact sets.

The final claim now follows immediately from the argument in part c), which realizes the action of an element $g \in \mathrm{SL}_n(\mathbb{R})$ on \mathbb{R}^{n^2} as a diagonal action of n copies of g, together with the fact that $\Phi_*\lambda_{n^2} = |\det \Phi| \lambda_{n^2}$ for linear Φ , $\det g = 1$, $\mathcal{C}(gB) = g\mathcal{C}(B)$ and $\mathcal{C}(Bg) = \mathcal{C}(B)g$ for all $g \in \mathrm{SL}_n(\mathbb{R})$ and $B \subseteq \mathrm{SL}_n(\mathbb{R})$ Borel.

e) Let G denote the ax + b group defined as

$$G = \left\{ \begin{pmatrix} a & b \\ & 1 \end{pmatrix}; a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}$$

Note that every element in G can be written in a unique fashion as a product of the form:

$$\left(\begin{array}{cc}a&b\\&1\end{array}\right) = \left(\begin{array}{cc}\alpha\\&1\end{array}\right) \left(\begin{array}{cc}1&\beta\\&1\end{array}\right)$$

where $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$, which yields a coordinate system $\mathbb{R}^{\times} \times \mathbb{R} \leftrightarrow G$. Prove that

$$\mathrm{d}m(\alpha,\beta) = \frac{1}{|\alpha|} \,\mathrm{d}\alpha \,\mathrm{d}\beta$$

defines a left Haar measure on G. Calculate $\Delta_G(\alpha, \beta)$ for $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$.

Solution. We use the coordinate system $\varphi : \operatorname{Aff}_1(\mathbb{R}) \ni (a, b) \mapsto (a, a^{-1}b) \in \mathbb{R}^{\times} \times \mathbb{R}$. On $\mathbb{R}^{\times} \times \mathbb{R}$ we define the measure $d\nu(\alpha, \beta) := \frac{1}{|\alpha|} d\alpha d\beta$ and we claim that $(\varphi^{-1})_*\nu$ is a left-Haar measure on $\operatorname{Aff}_1(\mathbb{R})$. For $g \in G$ we denote as in the lecture $\lambda(g), \rho(g)$ the left, resp. right, action of g on $C_c(G)$.

Let $f \in C_c(\operatorname{Aff}_1(\mathbb{R}))$ and let $g = \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \in \operatorname{Aff}_1(\mathbb{R})$. Then a computation shows

$$g\varphi^{-1}(\alpha,\beta) = \begin{pmatrix} x\alpha & x\alpha\beta + y \\ 0 & 1 \end{pmatrix} = \varphi^{-1}(x\alpha,\beta + (x\alpha)^{-1}y).$$
(1)

and also

$$\varphi^{-1}(\alpha,\beta)g = \begin{pmatrix} x\alpha & \alpha y + \alpha\beta \\ 0 & 1 \end{pmatrix} = \varphi^{-1}(\alpha x, x^{-1}y + x^{-1}\beta).$$
⁽²⁾

We check left-invariance:

$$\begin{split} \lambda^*(g)(\varphi_*^{-1}\nu)(f) \stackrel{def}{=} (\varphi_*^{-1}\nu)(\lambda(g^{-1})f) \stackrel{def}{=} \nu\big((\lambda(g^{-1})f) \circ \varphi^{-1}\big) \\ \stackrel{def}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} (\lambda(g^{-1})f) \circ \varphi^{-1}(\alpha,\beta) d\nu(\alpha,\beta) \\ \stackrel{def}{=} \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f(g \cdot \varphi^{-1}(\alpha,\beta)}{|\alpha|} d\beta \right) d\alpha \\ \stackrel{(1)}{=} \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha,\beta + (x\alpha)^{-1}y)}{|\alpha|} d\beta \right) d\alpha \\ d\beta \text{ left-invariant} \to &= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha,\beta)}{|\alpha|} d\beta \right) d\alpha \\ \text{change of variables } \psi(z,w) = (x^{-1}z,w) \to &= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z,w)}{|x^{-1}z|} |x^{-1}| dw \right) dz \\ &= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z,w)}{|z|} dw \right) dz \\ &= \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} f \circ \varphi^{-1}(z,w) d\nu(z,w) \stackrel{def}{=} (\varphi_*^{-1}\nu)(f) \end{split}$$

5

The modular function is determined by $\Delta_G(g)(\varphi_*^{-1}\nu)(f) = (\varphi_*^{-1}\nu)(\rho(g)f)$. So for $f \in C_c(G), g = \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}$ we compute $(\varphi_*^{-1}\nu)(\rho(g)f) = \nu \left(\rho(g)f \circ \varphi^{-1}\right)$ $\stackrel{def}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f(\varphi^{-1}(\alpha, \beta)g)}{|\alpha|} d\beta d\alpha$ $\stackrel{def}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f(\varphi^{-1}(\alpha, \beta)g)}{|\alpha|} d\beta d\alpha$ $\stackrel{(2)}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(\alpha x, x^{-1}y + x^{-1}\beta)}{|\alpha|} d\beta d\alpha$ $d\beta$ left-invariant $\rightarrow = \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(\alpha x, x^{-1}\beta)}{|\alpha|} d\beta d\alpha$ change of variables $\eta(z, w) = (x^{-1}z, xw) \rightarrow = \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z, w)}{|x^{-1}z|} dw dz$ $= |x| \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z, w)}{|z|} dw dz$ $\stackrel{def}{=} |x|(\varphi_*^{-1}\nu)(f)$

Therefore $\Delta_{\operatorname{Aff}_1(\mathbb{R})}\begin{pmatrix} x & y\\ 0 & 1 \end{pmatrix} = |x|.$

Exercise 3. Haar measures on profinite groups Let (I, \leq) be a directed (index) set and let $\{f_i^j: G_j \to G_i \mid i \leq j\}$ be a projective system of discrete finite groups $\{G_i \mid i \in I\}$, i.e. $f_i^j: G_j \to G_i, i \leq j$, are group homomorphisms such that $f_i^j \circ f_j^k = f_i^k$ for all $i \leq j \leq k$. We define its *inverse limit* as the subgroup

$$\varprojlim G_i \coloneqq \left\{ (g_i)_{i \in I} \in \prod_{i \in I} G_i \, \middle| \, f_i^j(g_j) = g_i \quad \forall i \le j \right\} \subseteq \prod_{i \in I} G_i.$$

The inverse limit $\varprojlim G_i$ is a closed subgroup of the compact group $\prod_{i \in I} G_i$ and thus it is compact, too. Any topological group that is the inverse limit of a projective system of discrete finite groups is called a *profinite group*.

- Let $\overline{G} = \lim_{i \to \infty} G_i$ be a profinite group and denote $\overline{\pi}_j : \overline{G} \to G_j, (g_i)_{i \in I} \mapsto g_j$ for every $j \in I$.
 - 1) Show that the kernels $\{K_j := \ker(\overline{\pi}_j)\}_{j \in I}$ form a neighborhood basis of the identity consisting of compact open sets.

<u>Remark:</u> This shows that every profinite group is locally compact.

Solution. Clearly $id_{\overline{G}} \in K_j$ for all $j \in I$. Further, if $(g_i)_{i \in I} \in K_j$, then $g_j = \mathrm{Id}_{G_j}$ which in particular implies $g_i = id_{G_i}$ for every $i \leq j$, by the compatibility condition $f_i^j(g_j) = g_i \quad \forall i \leq j$ defining the inverse limit. Since $\{\mathrm{Id}_{G_j}\}$ is an open set in G_j and $\overline{\pi}_j$ is continuous, the sets K_j are open sets. In fact, $K_j = (\prod_{i \in F} \{id_{G_i}\} \times \prod_{i \in I \setminus F} G_i) \cap \overline{G} = \bigcap_{i \in F} \{id_{G_i}\} \times \prod_{i \in I \setminus F} G_i) \cap \overline{G}$, where $F = \{i \in I \mid i \leq j\}$, is the intersection of compact sets and thus also compact.

By definition of the product topology on $\prod_{i \in I} G_i$, the neighborhood base of $id_{\overline{G}}$ is given by all sets of the form $(\prod_{i \in F} U_i \times \prod_{i \in I \setminus F} G_i) \cap \overline{G}$ where $F \subset I$ is finite and $id_{G_i} \in U_i \subset G_i$ are open sets for all $i \in F$. Fix such an open set and let $j \in I$ be an upper bound for F, that is, $i \leq j$ for all $i \in F$. Then

$$K_j \subseteq (\prod_{i \in F} U_i \times \prod_{i \in I \setminus F} G_i) \cap \overline{G}_i$$

since every element $(g_i)_{i \in I} \in K_j$ satisfies $g_i = id_{G_i}$ for every $i \leq j$ and thus $g_i \in U_i$ for all $i \in F$ and $g_i \in G_i$ for all $i \in I \setminus F$.

Thus, $\{K_j := \ker(\overline{\pi}_j)\}_{j \in I}$ form a neighborhood basis of the identity consisting of compact open sets.

2) Let μ be a Haar measure on \overline{G} normalized such that $\mu(\overline{G}) = 1$. Show that

$$\mu(K_j) = \frac{1}{\left|\overline{G} \colon K_j\right|} = \frac{1}{\left|\operatorname{im}(\overline{\pi}_j)\right|}.$$

Solution. Fix $j \in I$ and look at the exact sequence

$$1 \to K_j \hookrightarrow \overline{G} \xrightarrow{\overline{\pi}_j} \operatorname{im}(\overline{\pi}_j) \to 1.$$

For every $g_i \in \operatorname{im}(\overline{\pi}_j) \subseteq G_j$ we pick a preimage $x_i = \overline{\pi}_j^{-1}(g_i)$ which gives a set $X := \{x_i\}_{g_i \in \operatorname{im}(\overline{\pi}_j)}$ of coset representatives of $\overline{G}/K_j \simeq \operatorname{im}(\overline{\pi}_j)$. We deduce that

$$1 = \mu(\overline{G}) = \mu\left(\bigsqcup_{x \in X} xK_j\right) = \sum_{x \in X} \mu(xK_j) = |\operatorname{im}(\overline{\pi}_j)| \, \mu(K_j),$$

where the last equality follows by (left-) invariance of the (left) Haar measure. Thus, we obtain

$$\mu(K_j) = \frac{1}{|\operatorname{im}(\overline{\pi}_j)|} = \frac{1}{|\overline{G} \colon K_j|}$$

3) Let $\mathbb{Z}_p = \lim_{i \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}$ be the *p*-adic integers, let μ be a normalized Haar measure, and set $C_m := \{(a_i)_{i \in \mathbb{N}} \in \mathbb{Z}_p \mid 0 = a_1, \dots, 0 = a_m\}$. Compute $\mu(C_m)$ using part 2.

Solution. Note that C_m is equal to $\ker(\overline{\pi}_m)$ where $\overline{\pi}_m \colon \mathbb{Z}_p \to \mathbb{Z}/p^m\mathbb{Z}$. By part 2 we get

$$\mu(C_m) = \frac{1}{|\mathrm{im}(\overline{\pi}_m)|} = \frac{1}{p^m}$$

since $\overline{\pi}_m$ is surjective. Indeed, for every $x \in \mathbb{Z}/p^m\mathbb{Z}$ we can consider any lift $y \in \mathbb{Z}$ and define $a_i = y \mod p^i$ for all $i \in \mathbb{N}$, then $(a_i)_{i \in \mathbb{N}} \in \mathbb{Z}_p$ satisfies $\overline{\pi}_m((a_i)_{i \in \mathbb{N}}) = y \mod p^m = x$.

Exercise 4 (Aut($\mathbb{R}^n, +$) \cong GL(n, \mathbb{R})). For a topological group G, we denote by Aut(G) the group of bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact Hausdorff group $G = (\mathbb{R}^n, +)$ where $n \in \mathbb{N}_0$.

a) Show that $\operatorname{Aut}(G)$, i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $\operatorname{GL}_n(\mathbb{R})$.

Solution. Let $\varphi \in \operatorname{Aut}(\mathbb{R}^n)$, then φ is in particular additive and thus $\varphi(kv) = k\varphi(v)$ for all $v \in \mathbb{R}^n$, for all $k \in \mathbb{Z}$. Let $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and $q = \frac{m}{n} \in \mathbb{Q}$, then

$$n\varphi(qv) = \varphi(nqv) = \varphi(mv) = m\varphi(v) \implies \varphi(q)\varphi(v) = q\varphi(v)$$

and φ is \mathbb{Q} -linear. \mathbb{R} -linearity follows from continuity of φ and thus $\varphi \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^n)$. As φ is invertible, any choice of basis realizes φ as an element in $\operatorname{GL}_n(\mathbb{R})$. It is clear that for such a choice of a basis, any $g \in \operatorname{GL}_n(\mathbb{R})$ defines an element in $\operatorname{Aut}(\mathbb{R}^n)$ and that the correspondence is 1-1 and obeys the various group structures (on $\operatorname{Aut}(G)$ and $\operatorname{GL}_n(\mathbb{R})$).

b) Show that mod : $\operatorname{Aut}(G) \to \mathbb{R}_{>0}$ is given by $\alpha \mapsto |\det \alpha|$.

Solution. The *n*-dimensional Lebesgue measure λ_n on \mathbb{R}^n clearly is a Haar measure for \mathbb{R}^n : it is translation invariant and

$$\lambda_n \left(B_r(v) \right) = \frac{(\sqrt{\pi r})^n}{\Gamma(\frac{n}{2} + 1)} \in (0, \infty) \quad (r > 0, v \in \mathbb{R}^n),$$

showing that it is positive on open and finite on compact subsets of \mathbb{R}^n . Let $f \in C_c(\mathbb{R}^n)$, $g \in \mathrm{GL}_n(\mathbb{R})$. We check that $\lambda_n(g^{-1} \cdot f) = |\det g|^{-1} \lambda_n(f)$:

$$\lambda_n(g^{-1}f) = \int_{\mathbb{R}^n} f(gv) \, d\lambda_n(v) = \frac{1}{|\det g|} \int_{\mathbb{R}^n} f(gv) \, |\det g| \, d\lambda_n(v)$$

change of variables $\rightarrow = |\det g|^{-1} \int_{\mathbb{R}^n} f(v) \, d\lambda_n(v)$
 $= |\det g|^{-1} \lambda_n(f).$

c) Prove that there exists a discontinuous, bijective homomorphism from the additive group $(\mathbb{R}, +)$ to itself.

Solution. Using Zorn's lemma, construct a \mathbb{Q} -basis of \mathbb{R} containing 1. Denote this basis by $\{x_i; i \in I\}$ for any infinite index set I containing 0 such that $x_0 = 1$ (I is infinite as otherwise \mathbb{R} would be algebraic over \mathbb{Q}). Fix $i, j \in I \setminus \{0\}$ such that $i \neq j$ and define a linear map $\varphi : \mathbb{R} \to \mathbb{R}$ by \mathbb{Q} -linear extension of

$$\forall k \in I : \varphi(x_k) = \begin{cases} x_j & \text{if } k = i, \\ x_i & \text{if } k = j, \\ x_k & \text{else.} \end{cases}$$

Then φ is a homomorphism by definition and is the identity on \mathbb{Q} . Since every real number is the limit of a \mathbb{Q} -Cauchy sequence¹, let $(q_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ Cauchy such that $\lim_{n \to \infty} q_n = x_i$, then

$$\lim_{n \to \infty} \varphi(q_n) = \lim_{n \to \infty} q_n = x_i \neq x_j = \varphi(x_i) = \varphi(\lim_{n \to \infty} q_n).$$

¹For example: given $x \in \mathbb{R}$ take $q_n \coloneqq \frac{\lfloor nx \rfloor}{n} \in \mathbb{Q}$, so that $\frac{nx-1}{n} \leq q_n \leq \frac{nx}{n}$.