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Solutions of Exercise Sheet 4

Exercise 1 (One- and two-dimensional Lie Algebras). Classify the one- and two-dimensional real Lie algebras
up to Lie algebra isomorphism and realize them as Lie subalgebras of some glnR = gl(Rn).

Hint: In dimension two one can show that if the Lie algebra is non-abelian then there is a basis X,Y such
that [X,Y ] = Y .

Solution. Let (a, [·, ·]) be a real Lie algebra.

We will first deal with the one-dimensional case. Suppose dim a = 1 and let X be a basis vector for a. Due
to the anti-symmetry of the Lie bracket we have

[X,X] = −[X,X] = 0,

i.e. every one-dimensional Lie algebra is abelian. We claim that the linear map ϕ : (a, [·, ·]) → (R, [·, ·]) given
by ϕ(X) = 1 is a Lie algebra isomorphism where the Lie bracket on R vanishes everywhere. Clearly, ϕ is an
isomorphism of vector spaces and

[ϕ(X), ϕ(X)] = 0 = ϕ([X,X]︸ ︷︷ ︸
=0

)

such that ϕ is indeed a Lie algebra isomorphism.

In order to realize a as a Lie subalgebra of some glnR we need to find a one-dimensional subalgebra of some
glnR on which the commutator [·, ·] in glnR vanishes. Consider

b =

{(
x 0
0 0

)
: x ∈ R

}
⊆ gl2R.

Clearly, b is a linear subspace of gl2R. Further, note that(
x 0
0 0

)(
y 0
0 0

)
=

(
x · y 0
0 0

)
=

(
y 0
0 0

)(
x 0
0 0

)
for all x, y ∈ R, such that [X,Y ] = 0 for all X,Y ∈ b. Therefore the vector space isomorphism ψ : R → b
given by

ψ(x) =

(
x 0
0 0

)
is also a Lie algebra isomorphism. Thus, ψ ◦ ϕ : a ↪→ gl2(R) realizes a as a Lie subalgebra of gl2R.

Suppose dim a = 2 and let {X,Y } be a basis of a. Suppose a is abelian, i.e. [X,Y ] = 0. Consider

c :=

{(
x 0
0 y

)
: x, y ∈ R

}
⊂ gl2R

and the vector space isomorphism ϕ : a → c given by

ϕ(X) =

(
1 0
0 0

)
=: E11, ϕ(Y ) =

(
0 0
0 1

)
=: E22.

Note that
E11 · E22 = 0 = E22 · E11,

such that
ϕ([X,Y ]) = ϕ(0) = 0 = [E11, E22] = [ϕ(X), ϕ(Y )].
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Therefore, ϕ : a → c ⊂ gl2R is a Lie algebra isomorphism. This realizes a as the subalgebra c of gl2R and
shows that every real abelian Lie algebra is isomorphic to c.

Finally, suppose that a is non-abelian such that

[X,Y ] = αX + βY ̸= 0 (?)

for some α, β ∈ R. By (?) not both α and β are zero such that

βλ− αµ = 1

for some λ, µ ∈ R. Define
X ′ := λX + µY, Y ′ := αX + βY = [X,Y ].

Observe that the base change from {X,Y } to {X ′, Y ′} is given by the matrix(
λ α
µ β

)
with determinant λβ − αµ = 1 such that {X ′, Y ′} is again a basis of a. Further,

[X ′, Y ′] = [λX + µY, αX + βY ]

= λβ[X,Y ] + µα[Y,X]

= (βλ− αµ)[X,Y ]

= Y ′.

Consider the vector subspace d ⊂ gl2R generated by the matrices

A :=

(
1
2 0
0 − 1

2

)
, C :=

(
0 1
0 0

)
.

In fact, d is a Lie subalgebra:

[A,C] =

(
1
2 0
0 − 1

2

)(
0 1
0 0

)
−
(
0 1
0 0

)(
1
2 0
0 − 1

2

)
=

(
0 1

2
0 0

)
−
(
0 − 1

2
0 0

)
=

(
0 1
0 0

)
= C.

This computation also shows that the linear map ϕ : a → d given by

ϕ(X ′) = A, ϕ(Y ′) = C

is a Lie algebra isomorphism (it is easily seen to be an isomorphism of vector spaces). Therefore, a can be
realized as the subalgebra d of gl2R. This also proves that any real, non-abelian Lie algebra a is isomorphic
to d.

Remark: Notice that the map Φ : gl2R ↪→ glnR given by

Φ(A) =

(
A 0
0 0

)
is an injective Lie algebra homomorphism such that the discussed realizations of a as subalgebras of gl2R
also amount to realizations of a in any glnR.
Exercise 2 (Some Lie Algebras). (a) Let M , N be smooth manifolds and let f : M → N be a smooth

map of constant rank r. By the constant rank theorem we know that the level set L = f−1(q) is a
regular submanifold of M of dimension dimM − r for every q ∈ N . Show that one may canonically
identify

TpL ∼= kerdpf

for every p ∈ L = f−1(q).
Hint: Describe elements in TpL as γ′(0) for a smooth path γ : (−ε, ε) →M .
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Solution. Since L = f−1(q) is a regular submanifold of M we may think of the tangent space TpL
as a subspace of the tangent space TpM . We will first show that TpL ⊆ kerdpf . Let v ∈ TpL and let
γ : (−ε, ε) → L = f−1(q) be a smooth curve in L such that γ(0) = p and γ′(0) = v. Then f(γ(t)) = q
for all t ∈ (−ε, ε), i.e. f ◦ γ is the constant curve. It follows that

dpf(v) = dγ(0)f(γ
′(0)) =

d

dt

∣∣∣∣
t=0

f(γ(t)) = 0.

In particular, v ∈ kerdpf as claimed.
Finally, note that kerdpf is a subspace of TpM of dimension

dimkerdpf = dimTpM − rank dpf = dimM − r = dimL = dimTpL.

Therefore TpL is a linear subspace of kerdpf of maximal dimension such that TpL = kerdpf .

(b) Use part a) to compute the Lie algebras of the following Lie groups: O(n,R), SO(n,R), O(p, q), B(n)
the group of real invertible upper triangular matrices and N(n) the subgroup of B(n) with only ones
on the diagonal.

Solution. Note that all of the listed Lie groups are subgroups of GL(n,K) that are also regular
submanifolds (K = R or C). In particular the inclusion maps yield injective Lie algebra homomorphisms.
This implies that the corresponding Lie algebras can be canonically identified with Lie subalgebras
of glnK. Hence the Lie bracket will be given by the ambient Lie bracket [·, ·] of glnK. Identifying
glnK ∼= TI GL(n,K) ∼= Kn×n the Lie bracket is given by the commutator

[A,B] = AB −BA.

(i) O(n,R): Consider the function f1 : GL(n,R) → Rn×n given by

f1(A) = ATA

for every A ∈ GL(n,R). It is easy to check that f1 has constant rank and that

O(n) = f−1
1 (I).

By part a)
o(n) := Lie(O(n)) ∼= TIO(n) ∼= kerdIf1 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf1(X) =
d

dt

∣∣∣∣
t=0

(I + tX)t(I + tX)

= Xt +X

where we have used exercise 2 in the last equality. Therefore

o(n) = {X ∈ glnR : Xt +X = 0}.

(ii) O(p, q): Consider the function f2 : GL(n,R) → Rn×n given by

f2(A) = AT Ip,qA

for every A ∈ GL(n,R), where

Ip,q = diag(1, . . . , 1︸ ︷︷ ︸
p-times

,−1, . . . ,−1︸ ︷︷ ︸
q-times

).

It is easy to check that f2 has constant rank and that

O(p, q) = f−1
2 (Ip,q).
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By part a)
o(p, q) := Lie(O(p, q)) ∼= TIO(p, q) ∼= kerdIf2 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf2(X) =
d

dt

∣∣∣∣
t=0

(I + tX)tIp,q(I + tX)

= XtIp,q + Ip,qX

where we have used exercise 2 in the last equality. Therefore

o(p, q) = {X ∈ glnR : XtIp,q + Ip,qX = 0}.

(iii) B(n): Consider the function f5 : GL(n,R) → Rn×n given by

f5(A) =


0 · · · · · · 0

A21
. . . ...

... . . . . . . ...
An1 · · · An,n−1 0


for every A ∈ GL(n,R). It is easy to check that f5 has constant rank and that

B(n) = f−1
5 (0).

By part a)
b(n) := Lie(B(n)) ∼= TIB(n) ∼= kerdIf5 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf5(X) =
d

dt

∣∣∣∣
t=0

f5(I + tX)

=


0 · · · · · · 0

X21
. . . ...

... . . . . . . ...
Xn1 · · · Xn,n−1 0

 .

Therefore

b(n) =


X11 · · · X1n

. . . ...
0 Xnn

 ∈ Rn×n

 .

(iv) N(n): Consider the function f6 : GL(n,R) → Rn×n given by

f6(A) =

X11 0
... . . .

Xn1 · · · Xnn


for every A ∈ GL(n,R). It is easy to check that f6 has constant rank and that

N(n) = f−1
6 (I).

By part a)
n(n) := Lie(N(n)) ∼= TIN(n) ∼= kerdIf6 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf6(X) =
d

dt

∣∣∣∣
t=0

f6(I + tX)

=

X11 0
... . . .

Xn1 · · · Xnn

 .
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Therefore

n(n) =


0 ∗ ∗

... . . . ∗
0 · · · 0

 ∈ Rn×n

 .

Exercise 3 (Distributions and Lie Subalgebras). a) Let M be a smooth manifold, X,Y ∈ Vect(M) vec-
tor fields on M , and f, g ∈ C∞(M) smooth functions. Show that

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

Solution. Let h ∈ C∞(M) and p ∈M . We compute

([fX, gY ]ph) = f(p)Xp(g(Y h))− g(p)Yp(f(Xh))

= f(p)(Xpg)(Yph) + f(p)g(p)Xp(Y h)

− g(p)(Ypf)(Xph)− g(p)f(p)Yp(Xh)

= f(p)g(p)([X,Y ]ph) + f(p)(Xpg)(Yph)− g(p)(Ypf)(Xph).

b) Show that the Lie algebra h of a Lie subgroup H of a Lie group G determines a left-invariant involutive
distribution.
Remark: Part a) is not necessarily needed for part b).

Solution. Let ι : H ↪→ G be a Lie subgroup and let X1, . . . , Xn be a basis of TeH ∼= h. We define
smooth left-invariant vector fields Y1, . . . , Yn on G via

(Yi)g = deLg(deιXi)

for every g ∈ G, i = 1, . . . , n. These clearly define a global basis of the left-invariant distribution
D = span{Y1, . . . , Yn} ⊂ TG on G.
We need to see that D is involutive. Observe that Yi is Lg-related to itself for every g ∈ G by definition.
By exercise 1 also [Yi, Yj ] is Lg-related to itself such that

[Yi, Yj ]g = [Yi, Yj ]Lg(e) = deLg([Yi, Yj ]e)

for every g ∈ G. Further Yi is ι-related to Xi by definition. Therefore also [Yi, Yj ] is ι-related to [Xi, Xj ]
such that

[Yi, Yj ]e = [Yi, Yj ]ι(e) = deι[Xi, Xj ]e ∈ De.

Hence,
[Yi, Yj ]g = deLg([Yi, Yj ]e) ∈ deLg(De) = Dg

by left-invariance. This shows that D is involutive.

Exercise 4 (Surjectivity of the Matrix Exponential). Let Exp : gl(n,R) ∼= Rn×n → GL(n,R) be the matrix
exponential map given by the power series

Exp(X) :=

∞∑
n=0

Xn

n!
.

Consider the Lie subgroup of upper triangular matrices N(n) < GL(n,R) with its Lie algebra n(n) < gl(n,R)
of strictly upper triangular matrices; cf. exercise sheet 4 problem 3.

Show that Exp |n(n) : n(n) → N(n) is surjective.

Hint: Consider the partially defined matrix logarithm Log : Rn×n → Rn×n given by

Log(I +A) =

∞∑
n=1

(−1)n−1A
n

n
.

Try to give answers to the following questions and then conclude:
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What is its radius of convergence r about I? Why is it a right-inverse of Exp on the ball Br(I) of radius r
about I? Why is there no problem for matrices that are in N(n) but not in Br(I)?

In order to answer the last question prove that An = 0 for all A ∈ n(n).

Solution. Note that
r = lim

n→∞

∣∣∣∣ (−1)n−1

n
· n+ 1

(−1)n

∣∣∣∣ = 1

such that the power series Log(I + A) converges absolutely for every A ∈ Rn×n with ∥A∥ < 1 as in the
complex case.

For all complex numbers z ∈ C with |z| < 1 we have

elog(1+z) = 1 + z. (1)

Recall that

ez =

∞∑
n=0

zn

n!
∀z ∈ C

and
log(1 + z) =

∞∑
n=1

(−1)n−1 z
n

n
∀z ∈ B1(0) ⊂ C.

Writing the composition elog(1+z) as a power series we obtain

elog(1+z) =

∞∑
k=0

1

k!

( ∞∑
n=1

(−1)n−1 z
n

n

)k

=

∞∑
k=0

dkz
k

for all z ∈ B1(0) ⊂ C for some dk ∈ R, where one uses succesively the Cauchy product rule for power series
to compute the power series representation of

(∑∞
n=1(−1)n−1 zn

n

)k and then uses the fact that the series
converges absolutely for |z| < 1 to reorder it and to obtain the coefficients for each zk.

Comparing coefficients in (1) then yields that d0 = d1 = 1 and dk = 0 for all k > 1.

Let us now write Exp(Log(I +A)) as well as a power series

Exp(Log(I +A)) =

∞∑
k=0

1

k!

( ∞∑
n=1

(−1)n−1A
n

n

)k

=

∞∑
k=0

dkA
k

for all z ∈ B1(0) ⊂ C, where one uses succesively the Cauchy product rule for power series to compute the
power series representation of

(∑∞
n=1(−1)n−1 zn

n

)k and then uses the fact that the series converges absolutely
for |z| < 1 to reorder it and to obtain the coefficients for each zk as above.

Observe that the coefficients dk ∈ R are the same as in the complex case! This is due to the fact that they
arise from the same computation with power series (Cauchy product rule and reordering accordingly). Hence,
d0 = d1 = 1 and dk = 0 for all k > 1 such that

Exp(Log(I +A)) = I +A

for every A ∈ Rn×n with ∥A∥ < 1. 1

Finally, observe that every X ∈ N(n) can be written as X = I +A where A ∈ n(n). Furthermore, since A is
strictly upper triangular it maps

A|Vi
: Vi → Vi−1

1The reasoning applied here can be generalized. In fact, there are theorems that relate identities of complex power series
to identities of power series in Banach algebras; see e.g. Königsberger: „Analysis 2”, ch. 1.6 and Königsberger: „Analysis 2”,
Exercise 18, p. 44
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where Vi = span{e1, . . . , ei}, V0 = {0} for every i = 1, . . . , n. In particular,

An : Rn = Vn → Vn−1 → · · · → V0 = {0}

such that An = 0.

That means that for every A ∈ n(n) the power series Log(I +A) is actually a polynomial in A taking values
in n(n):

Log(I +A) =

n−1∑
k=1

(−1)k−1A
k

k
∈ n(n).

Because Log(I +A) is again in n(n) also Exp(Log(I +A)) becomes a polynomial p in A:

Exp(Log(I +A)) =

∞∑
k=0

1

k!

(
n−1∑
l=1

(−1)l−1A
l

l

)k

︸ ︷︷ ︸
=0, if k≥n

=

n−1∑
k=0

1

k!

(
n−1∑
l=1

(−1)l−1A
l

l

)k

=: p(A)

Now observe that ∥tA∥ < 1 for all t ∈ IA := (−∥A∥−1, ∥A∥−1) ⊂ R. Hence,

p(tA) = Exp(Log(I + tA)) = I + tA

for all t ∈ IA. The left-hand-side and the right-hand-side are both polynomials in t which coincide on an
open subset of R. Thus they have to coincide everywhere; in particular

Exp(Log(I +A)) = I +A

for t = 1. This shows that Log |N(n) is a well-defined right-inverse of Exp |n(n).

Exercise 5. Continuous one-parameter subgroups Let G be a Lie group and ϕ : R → G a continuous group
homomorphism. Prove that ϕ is smooth.

Hint: Use the exponential map.

Solution. We claim that there is Z ∈ g such that

ϕ(t) = exp(tZ) (t ∈ R).

To this end let V ⊆ g an open ball around 0 such that U := exp(V ) is open in G and exp
∣∣
V

is a diffeomorphism
onto its image. Let V ′ := 1

2V and U ′ := exp(V ′). As ϕ is continuous, there is ε > 0 such that ϕ(−ε, ε) ⊆ U ′.
Let 0 < |t0| < ε, n ∈ N arbitrary and choose Y,X ∈ V ′ such that

ϕ(t0) = exp(Y ), ϕ

(
t0
n

)
= exp(X).

We claim that nX = Y . Assume that we know for 1 ≤ k < n that kX ∈ V ′, then (k + 1)X ∈ V and

exp
(
(k + 1)X

)
= exp(X)k+1 = ϕ

(
t0
n

)k+1

= ϕ

(
k + 1

n
t0

)
∈ U ′

as
∣∣k+1

n t0
∣∣ ≤ |t0| < ε. This implies that there is some Xk+1 ∈ V ′ such that

exp
(
(k + 1)X

)
= exp(Xk+1).

As (k + 1)X ∈ V ⊃ V ′ and exp
∣∣
V

is injective, it follows Xk+1 = (k + 1)X and hence (k + 1)X ∈ V ′. In
particular nX ∈ V ′. Now

exp(nX) = exp(X)n = ϕ

(
t0
n

)n

= ϕ(t0) = exp(Y )
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and once more injectivity of exp
∣∣
V

implies nX = Y . Now let p
q ∈ Q, then

ϕ

(
p

q
t0

)
= ϕ

(
t0
q

)p

= exp

(
1

q
Y

)p

= exp

(
p

q
Y

)
.

Continuity yields
ϕ(r) = exp(rZ) (r ∈ R)

with Z := 1
t0
Y . This proves smoothness of ϕ.
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