Solutions of Exercise Sheet 5

Exercise 1 (Abstract Subgroups as Lie Subgroups). Let H be an abstract subgroup of a Lie group G and let \mathfrak{h} be a subspace of the Lie algebra \mathfrak{g} of G. Further let $U \subseteq \mathfrak{g}$ be an open neighborhood of $0 \in \mathfrak{g}$ and let $V \subseteq G$ be an open neighborhood of $e \in G$ such that the exponential map $\exp : U \to V$ is a diffeomorphism satisfying $\exp(U \cap \mathfrak{h}) = V \cap H$. Show that the following statements hold:

- a) H is a Lie subgroup of G with the induced relative topology;
- b) \mathfrak{h} is a Lie subalgebra of \mathfrak{g} ;
- c) \mathfrak{h} is the Lie algebra of H.

Remark: This is precisely the lemma we saw in class but did not prove.

Solution. We will first show that H is an embedded submanifold of G. For that it is enough to check that there are slice charts about every point $h \in H$. For h = e choose any linear isomorphism $E : \mathfrak{g} \to \mathbb{R}^m$ that sends \mathfrak{h} to \mathbb{R}^k where dim $G = \dim \mathfrak{g} = m$ and dim $\mathfrak{h} = k$. The composite map

$$\varphi = E \circ \exp^{-1} : \exp U = V \longrightarrow \mathbb{R}^n$$

is then a smooth chart for G, and

$$\varphi((\exp(U) \cap H) = E(U \cap \mathfrak{h})$$

is the slice obtained by setting the last m - k coordinates equal to zero. Moreover, if $h \in H$ is arbitrary, the left translation map L_h is a diffeomorphism from $\exp(U)$ to a neighborhood of h. Since H is a subgroup, $L_h(H) = H$, and so

$$L_h((\exp U) \cap H) = L_h(\exp U) \cap H,$$

and $\varphi \circ L_h^{-1}$ is easily seen to be a slice chart for H in a neighborhood of h. Thus H is an embedded submanifold of G.

We will now make use of the following Lemma:

Lemma: Let G be a Lie group, and suppose $H \subseteq G$ is a subgroup that is also an embedded submanifold. Then H is a Lie subgroup.

Proof: We need only check that multiplication $m : H \times H \to H$ and inversion $i : H \to H$ are smooth maps. Because multiplication is a smooth map from $G \times G$ to G its restriction is clearly smooth from $H \times H$ to G. Because H is a subgroup, multiplication takes $H \times H$ to H. Using local slice charts for H in G it follows easily that $m : H \times H \to H$ is smooth. The same argument works for inversion. \Box

This proves a). We will prove b) and c) in one go:

Denote by $\iota : H \to G$ the embedding from H into G and let $\mathfrak{b} \subseteq \mathfrak{g}$ be a complementary subspace of \mathfrak{h} such that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{b}$. This yields the following commutative diagram:

$$\begin{array}{c} \operatorname{Lie}(H) \xrightarrow{d_e \iota} \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{b} \\ \downarrow^{\operatorname{exp}} & \downarrow^{\operatorname{exp}} \\ H \xrightarrow{\iota} & G \end{array}$$

By construction of the slice charts of H it is immediate that $d_e\iota$ is an isomorphism of vector spaces from Lie(H) to \mathfrak{h} . Furthermore, ι is a Lie group homomorphism whence its differential $d_e\iota$ induces a Lie algebra homomorphism. Therefore $d_e\iota$ is a Lie algebra isomorphism from Lie(H) to \mathfrak{h} . Under the identification $H \cong \iota(H) \leq G$ we get $\text{Lie}(H) \cong \mathfrak{h}$. This proves b) and c).

Exercise 2 (Quotients of Lie groups). Let G be a Lie group and let $K \leq G$ be a closed normal subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map $\pi: G \to G/K$ is a surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood $U \subset \mathfrak{g}$ of the origin such that $\exp|_U : U \to \exp(U)$ is a diffeomorphism. Denote by $\mathfrak{k} = \operatorname{Lie}(K)$ the Lie algebra associated to K. Choose any complement \mathfrak{l} such that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{l}$ as vector spaces. Define

$$V := U \cap \mathfrak{l}.$$

Since $V \cap \mathfrak{k} = \{0\}$ it is immediate to verify that $\pi \circ \exp|_V : V \to G/K$ is a homeomorphism onto the image. This gives us a local chart around the point $K \in G/K$. We can get an atlas by suitably translating this chart by the natural action of G on G/K. This gives us back an atlas such that each change of coordinate charts is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the following diagrams commute:

$G \times G \longrightarrow {}^{n}$	$\xrightarrow{n} G$	$G \longrightarrow$	$\xrightarrow{i} G$
$\pi \times \pi$	π	π	π
\downarrow	\downarrow	\downarrow	\downarrow
$G/K \times G/K$		G/K	$\rightarrow G/K$

By definition, the quotient map $\pi: G \to G/K$ is a smooth submersion with respect to this smooth structure. Thus, it follows from the constant rank theorem that multiplication and inversion are smooth, and G/K is a Lie group. Moreover, it is clear from the construction that K is the kernel of π .

For more details see Theorem 21.26 in John M. Lee, "Intorduction to Smooth Manifolds", Springer (2013)

Exercise 3 (Z(G) = Ker(Ad)). Let G be a Lie group and \mathfrak{g} its Lie algebra. Use the fundamental relation that

$$g \exp(tX)g^{-1} = \exp(t \operatorname{Ad}_g(X))$$

for all $g \in G, t \in \mathbb{R}$ and $X \in \mathfrak{g}$ to prove the following.

(1) If G is connected, then the center Z(G) of G equals the kernel of the adjoint representation.

Solution. If $g \in Z(G)$, then we have for all $t \in \mathbb{R}$ and $X \in \mathfrak{g}$ that

$$\exp(tX) = g \exp(tX)g^{-1} = \exp(t \operatorname{Ad}_q(X))$$

and while exp may not be injective on all of \mathfrak{g} , it is injective on an open neighborhood of 0, in particular there is a vector-space basis of \mathfrak{g} contained in the open neighborhood of 0 such that $X = \operatorname{Ad}_g(X)$ for all elements of the basis. By linear extension, we then have that $\operatorname{Ad}_g = \operatorname{Id}$, so $g \in \operatorname{Ker}(\operatorname{Ad})$.

If on the other hand we start with $g \in \text{Ker}(\text{Ad})$, we apply the same formula to see that g commutes with all elements in an open neighborhood of $e \in G$ (contained in $\exp(\mathfrak{g}) \subseteq G$). Since G is connected, every element $h \in G$ is of the form $h = h_1 h_2 \cdots h_n$ for h_i in the neighborhood, and since g commutes with h_i individually, it commutes with h, so $g \in \mathbb{Z}(G)$.

(2) If G is connected, Z(G) is a closed subgroup and

$$\operatorname{Lie}(\operatorname{Z}(G)) = \mathfrak{z}(\mathfrak{g}) := \{ X \in \mathfrak{g} \colon \forall Y \in \mathfrak{g}, [X, Y] = 0 \}.$$

Solution. Note that $Z(G) = \{g \in G : \forall h \in G, ghg^{-1}h^{-1} = e\}$, so we can write

$$Z(G) = \bigcap_{h \in G} f_h^{-1}(e) \quad \text{for} \quad f_h(g) = ghg^{-1}h^{-1}$$

as a closed subgroup. By Proposition 3.18 we have

$$\operatorname{Lie}(\operatorname{Z}(G)) = \operatorname{Lie}(\operatorname{Ker}(\operatorname{Ad})) = \operatorname{Ker}(\operatorname{D}\operatorname{Ad}) = \operatorname{Ker}(\operatorname{ad}) = \mathfrak{z}(\mathfrak{g})$$

since $\operatorname{ad}_X(Y) = [X, Y]$.

Exercise 4 (The adjoint representation ad). Let V be a vector space over a field k.

a) Show that the vector space of endomorphisms

$$\mathfrak{gl}(V) \coloneqq \{A \colon V \to V \text{ linear}\}\$$

is a Lie algebra with the Lie bracket given by the commutator

$$[A, B] \coloneqq AB - BA$$

for all $A, B \in \mathfrak{gl}(V)$.

Solution. One immediately verifies that $\mathfrak{gl}(V)$ is an algebra with respect to the Lie bracket. What is left to check is that the commutator satisfies the Jacobi identity

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

for all $X, Y, Z \in \mathfrak{gl}(V)$.

We leave this computation to the reader.

b) Let \mathfrak{g} be a Lie algebra over k. The adjoint representation

ad: $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$

is defined as $\operatorname{ad}(X)(Y) \coloneqq [X,Y]$ for all $X, Y \in \mathfrak{g}$. Show that ad is a Lie algebra homomorphism.

Solution. It is easy to check that $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is linear. Thus, we only need to check that it preserves the Lie bracket.

We compute

$$\begin{aligned} [\mathrm{ad}(X), \mathrm{ad}(Y)](Z) &= (\mathrm{ad}(X) \circ \mathrm{ad}(Y) - \mathrm{ad}(Y) \circ \mathrm{ad}(X))(Z) \\ &= [X, [Y, Z]] - [Y, [X, Z]] \\ &= [X, [Y, Z]] + [Y, [Z, X]] \\ (\mathrm{Jacobi\ identity}) &= -[Z, [X, Y]] \\ &= [[X, Y], Z] = \mathrm{ad}([X, Y])(Z) \end{aligned}$$

for all $X, Y, Z \in \mathfrak{g}$.

Exercise 5. Adjoint of nilpotent elements Let $\mathfrak{g} \leq \mathfrak{gl}_n(\mathbb{C})$ be a Lie subalgebra.

Show that, if $X \in \mathfrak{g}$ is nilpotent then $\operatorname{ad}(X) \in \mathfrak{gl}(\mathfrak{g})$ is nilpotent.

Solution. This will follow from the following formula

$$\operatorname{ad}(X)^{n}(Y) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} X^{n-k} Y X^{k}$$
 (1)

for every $X, Y \in \mathfrak{g}, n \geq 0$.

Indeed, $X \in \mathfrak{g}$ is nilpotent if and only if $X^m = 0$ for some $m \in \mathbb{N}$. Then, by the above formula (1), $\operatorname{ad}(X)^{2m}(Y) = 0$ for every $Y \in \mathfrak{g}$.

We will prove (1) by induction on n. For n = 0 there is nothing to show. So, let us assume that (1) holds for n and we want to prove it for n + 1. This is a direct computation:

$$\begin{aligned} \operatorname{ad}(X)^{n+1}(Y) &= \operatorname{ad}(X) \left(\operatorname{ad}(X)^{n}(Y)\right) \\ &= X \cdot \operatorname{ad}(X)^{n}(Y) - \operatorname{ad}(X)^{n}(Y) \cdot X \\ &= X \cdot \left(\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} X^{n-k} Y X^{k}\right) - \left(\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} X^{n-k} Y X^{k}\right) \cdot X \\ &= X^{n+1}Y + \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} X^{n-k+1} Y X^{k} - \sum_{k=0}^{n-1} (-1)^{k} \binom{n}{k} X^{n-k} Y X^{k+1} + (-1)^{n+1} Y X^{n+1} \\ &= X^{n+1}Y + \sum_{k=1}^{n} (-1)^{k} \left(\binom{n}{k} + \binom{n}{k-1}\right) X^{n-k+1} Y X^{k} + (-1)^{n+1} Y X^{n+1} \\ &= X^{n+1}Y + \sum_{k=1}^{n} (-1)^{k} \binom{n+1}{k} X^{n-k+1} Y X^{k} + (-1)^{n+1} Y X^{n+1} \\ &= \sum_{k=0}^{n+1} (-1)^{k} \binom{n}{k} X^{n+1-k} Y X^{k} \end{aligned}$$