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Solutions of Exercise Sheet 5

Exercise 1 (Abstract Subgroups as Lie Subgroups). Let H be an abstract subgroup of a Lie group G and
let h be a subspace of the Lie algebra g of G. Further let U C g be an open neighborhood of 0 € g and let
V C G be an open neighborhood of e € G such that the exponential map exp : U — V is a diffeomorphism
satisfying exp(U Nh) =V N H. Show that the following statements hold:

a) H is a Lie subgroup of G with the induced relative topology;
b) b is a Lie subalgebra of g;
¢) b is the Lie algebra of H.

Remark: This is precisely the lemma we saw in class but did not prove.

Solution. We will first show that H is an embedded submanifold of G. For that it is enough to check that
there are slice charts about every point h € H. For h = e choose any linear isomorphism E : g — R™ that
sends b to R* where dim G' = dimg = m and dim b = k. The composite map

p=FEoexp !:expU =V — R™

is then a smooth chart for G, and
¢((exp(U) N H) = E(UNb)

is the slice obtained by setting the last m — k coordinates equal to zero. Moreover, if h € H is arbitrary, the
left translation map Ly, is a diffeomorphism from exp(U) to a neighborhood of h. Since H is a subgroup,
Ly(H)=H, and so

Lyp((expU)NH) = Lp(expU) N H,

and <poL,§1 is easily seen to be a slice chart for H in a neighborhood of h. Thus H is an embedded submanifold
of G.

We will now make use of the following Lemma:

Lemma: Let G be a Lie group, and suppose H C G is a subgroup that is also an embedded submanifold.
Then H is a Lie subgroup.

Proof: We need only check that multiplication m : H x H — H and inversion ¢ : H — H are smooth maps.
Because multiplication is a smooth map from G x G to G its restriction is clearly smooth from H x H to G.
Because H is a subgroup, multiplication takes H x H to H. Using local slice charts for H in G it follows
easily that m : H x H — H is smooth. The same argument works for inversion. [

This proves a). We will prove b) and ¢) in one go:

Denote by ¢ : H — G the embedding from H into G and let b C g be a complementary subspace of h such
that g = h & b. This yields the following commutative diagram:

By construction of the slice charts of H it is immediate that d.: is an isomorphism of vector spaces from
Lie(H) to h. Furthermore, ¢ is a Lie group homomorphism whence its differential d.t induces a Lie algebra
homomorphism. Therefore d.. is a Lie algebra isomorphism from Lie(H) to h. Under the identification
H = (H) < G we get Lie(H) = h. This proves b) and c).



Exercise 2 (Quotients of Lie groups). Let G be a Lie group and let K < G be a closed normal subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map 7: G — G/K is a
surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood U C g of the origin such that
exp |y : U — exp(U) is a diffeomorphism. Denote by ¢ = Lie(K) the Lie algebra associated to K. Choose
any complement [ such that g =€ @ [ as vector spaces. Define

V=UnL

Since V. N ¢ = {0} it is immediate to verify that moexp|y : V — G/K is a homeomorphism onto the image.
This gives us a local chart around the point K € G/K. We can get an atlas by suitably translating this chart
by the natural action of G on G/K. This gives us back an atlas such that each change of coordinate charts
is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the following
diagrams commute:

GxG@ —— @ G—" G

e kL

G/K xG/K ----- » G/K G/K ----- » G/K

By definition, the quotient map 7: G — G/K is a smooth submersion with respect to this smooth structure.
Thus, it follows from the constant rank theorem that multiplication and inversion are smooth, and G/K is
a Lie group. Moreover, it is clear from the construction that K is the kernel of 7.

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Manifolds”, Springer (2013)

Exercise 3 (Z(G) = Ker(Ad)). Let G be a Lie group and g its Lie algebra. Use the fundamental relation
that
gexp(tX)g~" = exp(t Ady(X))

for all g € G,t € R and X € g to prove the following.

(1) If G is connected, then the center Z(G) of G equals the kernel of the adjoint representation.

Solution. If g € Z(G), then we have for all t € R and X € g that
exp(tX) = gexp(tX)g—' = exp(t Ad, (X))

and while exp may not be injective on all of g, it is injective on an open neighborhood of 0, in particular
there is a vector-space basis of g contained in the open neighborhood of 0 such that X = Ad,(X) for
all elements of the basis. By linear extension, we then have that Ad, = Id, so g € Ker(Ad).

If on the other hand we start with g € Ker(Ad), we apply the same formula to see that g commutes
with all elements in an open neighborhood of e € G (contained in exp(g) C G). Since G is connected,
every element h € G is of the form h = hyhy--- h, for h; in the neighborhood, and since g commutes
with h; individually, it commutes with h, so g € Z(G).

(2) If G is connected, Z(G) is a closed subgroup and

Lie(Z(G)) = 3(a) := {X € g: VY € g, [X,Y] = 0},



Solution. Note that Z(G) = {g € G: Vh € G, ghg~'h~! = e}, so we can write

Z2(G) = () fi'(e) for  fulg) =ghg 'h
heG

as a closed subgroup. By Proposition 3.18 we have
Lie(Z(G)) = Lie(Ker(Ad)) = Ker(D Ad) = Ker(ad) = 3(g)

since adx (V) = [X,Y].

Exercise 4 (The adjoint representation ad). Let V' be a vector space over a field k.

2)

Show that the vector space of endomorphisms
gl(V):={A: V — V linear}
is a Lie algebra with the Lie bracket given by the commutator
[A,B]:== AB — BA
for all A, B € gl(V).

Solution. One immediately verifies that gl(V') is an algebra with respect to the Lie bracket. What is
left to check is that the commutator satisfies the Jacobi identity

(X, [, Z]| + [V, [Z, X]] + [Z,[X,Y]| = 0
for all X,Y,Z € gl(V).
We leave this computation to the reader.
Let g be a Lie algebra over k. The adjoint representation
ad: g — gl(g)
is defined as ad(X)(Y) := [X,Y] for all X, Y € g. Show that ad is a Lie algebra homomorphism.

Solution. It is easy to check that ad: g — gl(g) is linear. Thus, we only need to check that it preserves
the Lie bracket.

We compute

forall X,Y, Z € g.

Exercise 5. Adjoint of nilpotent elements Let g < gl,,(C) be a Lie subalgebra.

Show that, if X € g is nilpotent then ad(X) € gl(g) is nilpotent.

Solution. This will follow from the following formula

ad(X)"(Y) = Z(-l)k(Z> xnky x* (1)

k=0

for every X, Y € g, n > 0.



Indeed, X € g is nilpotent if and only if X™ = 0 for some m € N. Then, by the above formula (1),
ad(X)?™(Y) =0 for every Y € g.

We will prove (1) by induction on n. For n = 0 there is nothing to show. So, let us assume that (1) holds
for n and we want to prove it for n + 1. This is a direct computation:

ad(X)"TH(Y) = ad(X) (ad(X)"(Y))
= X - ad(X)"(Y) — ad(X)"(Y) - X

=X (i(—nk(’;)xn—w#) - (i(—l)k (Z)X"—kyxk> X

k=0 k=0

n n—1
_ Xn+1Y+ —1 k(n)Xnk+1YXk _ ~1 k<n>XnkYXk+1 + (=1 n+1YXn+1
> v} > (-1)

o n+1 - _1\k n n n—k+1 k _1\n+1 n+1
=X"MY +3 (-1) (<k>+<k_1>)x YXFE 4+ (-1)" Ty X

k=1

n

1

— Xn+1Y+ E (_1)]@(”_]'; >Xn—k+1YXk 4 (_1)n+1YXn+1
k=1

n+1 n
— Z(_l)k L Xn-‘rl—k:YXk
k=0



