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Exercise 1 (Abstract Subgroups as Lie Subgroups). Let H be an abstract subgroup of a Lie group G and
let h be a subspace of the Lie algebra g of G. Further let U ⊆ g be an open neighborhood of 0 ∈ g and let
V ⊆ G be an open neighborhood of e ∈ G such that the exponential map exp : U → V is a diffeomorphism
satisfying exp(U ∩ h) = V ∩H. Show that the following statements hold:

a) H is a Lie subgroup of G with the induced relative topology;

b) h is a Lie subalgebra of g;

c) h is the Lie algebra of H.

Remark: This is precisely the lemma we saw in class but did not prove.

Solution. We will first show that H is an embedded submanifold of G. For that it is enough to check that
there are slice charts about every point h ∈ H. For h = e choose any linear isomorphism E : g → Rm that
sends h to Rk where dimG = dim g = m and dim h = k. The composite map

φ = E ◦ exp−1 : expU = V −→ Rm

is then a smooth chart for G, and
φ((exp(U) ∩H) = E(U ∩ h)

is the slice obtained by setting the last m− k coordinates equal to zero. Moreover, if h ∈ H is arbitrary, the
left translation map Lh is a diffeomorphism from exp(U) to a neighborhood of h. Since H is a subgroup,
Lh(H) = H, and so

Lh((expU) ∩H) = Lh(expU) ∩H,

and φ◦L−1
h is easily seen to be a slice chart forH in a neighborhood of h. ThusH is an embedded submanifold

of G.

We will now make use of the following Lemma:

Lemma: Let G be a Lie group, and suppose H ⊆ G is a subgroup that is also an embedded submanifold.
Then H is a Lie subgroup.

Proof: We need only check that multiplication m : H ×H → H and inversion i : H → H are smooth maps.
Because multiplication is a smooth map from G×G to G its restriction is clearly smooth from H ×H to G.
Because H is a subgroup, multiplication takes H × H to H. Using local slice charts for H in G it follows
easily that m : H ×H → H is smooth. The same argument works for inversion.

This proves a). We will prove b) and c) in one go:

Denote by ι : H → G the embedding from H into G and let b ⊆ g be a complementary subspace of h such
that g = h⊕ b. This yields the following commutative diagram:

Lie(H) g = h⊕ b

H G

deι

exp exp

ι

By construction of the slice charts of H it is immediate that deι is an isomorphism of vector spaces from
Lie(H) to h. Furthermore, ι is a Lie group homomorphism whence its differential deι induces a Lie algebra
homomorphism. Therefore deι is a Lie algebra isomorphism from Lie(H) to h. Under the identification
H ∼= ι(H) ≤ G we get Lie(H) ∼= h. This proves b) and c).
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Exercise 2 (Quotients of Lie groups). Let G be a Lie group and let K ≤ G be a closed normal subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map π : G → G/K is a
surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood U ⊂ g of the origin such that
exp |U : U → exp(U) is a diffeomorphism. Denote by k = Lie(K) the Lie algebra associated to K. Choose
any complement l such that g = k⊕ l as vector spaces. Define

V := U ∩ l.

Since V ∩ k = {0} it is immediate to verify that π ◦ exp |V : V → G/K is a homeomorphism onto the image.
This gives us a local chart around the point K ∈ G/K. We can get an atlas by suitably translating this chart
by the natural action of G on G/K. This gives us back an atlas such that each change of coordinate charts
is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the following
diagrams commute:

G×G G

G/K ×G/K G/K

m

π×π π

G G

G/K G/K

i

π π

By definition, the quotient map π : G → G/K is a smooth submersion with respect to this smooth structure.
Thus, it follows from the constant rank theorem that multiplication and inversion are smooth, and G/K is
a Lie group. Moreover, it is clear from the construction that K is the kernel of π.

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Manifolds”, Springer (2013)

Exercise 3 (Z(G) = Ker(Ad)). Let G be a Lie group and g its Lie algebra. Use the fundamental relation
that

g exp(tX)g−1 = exp(tAdg(X))

for all g ∈ G, t ∈ R and X ∈ g to prove the following.

(1) If G is connected, then the center Z(G) of G equals the kernel of the adjoint representation.

Solution. If g ∈ Z(G), then we have for all t ∈ R and X ∈ g that

exp(tX) = g exp(tX)g−1 = exp(tAdg(X))

and while exp may not be injective on all of g, it is injective on an open neighborhood of 0, in particular
there is a vector-space basis of g contained in the open neighborhood of 0 such that X = Adg(X) for
all elements of the basis. By linear extension, we then have that Adg = Id, so g ∈ Ker(Ad).

If on the other hand we start with g ∈ Ker(Ad), we apply the same formula to see that g commutes
with all elements in an open neighborhood of e ∈ G (contained in exp(g) ⊆ G). Since G is connected,
every element h ∈ G is of the form h = h1h2 · · ·hn for hi in the neighborhood, and since g commutes
with hi individually, it commutes with h, so g ∈ Z(G).

(2) If G is connected, Z(G) is a closed subgroup and

Lie(Z(G)) = z(g) := {X ∈ g : ∀Y ∈ g, [X,Y ] = 0}.
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Solution. Note that Z(G) = {g ∈ G : ∀h ∈ G, ghg−1h−1 = e}, so we can write

Z(G) =
⋂
h∈G

f−1
h (e) for fh(g) = ghg−1h−1

as a closed subgroup. By Proposition 3.18 we have

Lie(Z(G)) = Lie(Ker(Ad)) = Ker(DAd) = Ker(ad) = z(g)

since adX(Y ) = [X,Y ].

Exercise 4 (The adjoint representation ad). Let V be a vector space over a field k.

a) Show that the vector space of endomorphisms

gl(V ) := {A : V → V linear}

is a Lie algebra with the Lie bracket given by the commutator

[A,B] := AB −BA

for all A,B ∈ gl(V ).

Solution. One immediately verifies that gl(V ) is an algebra with respect to the Lie bracket. What is
left to check is that the commutator satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ gl(V ).

We leave this computation to the reader.

b) Let g be a Lie algebra over k. The adjoint representation

ad: g → gl(g)

is defined as ad(X)(Y ) := [X,Y ] for all X,Y ∈ g. Show that ad is a Lie algebra homomorphism.

Solution. It is easy to check that ad: g → gl(g) is linear. Thus, we only need to check that it preserves
the Lie bracket.

We compute

[ad(X), ad(Y )](Z) = (ad(X) ◦ ad(Y )− ad(Y ) ◦ ad(X))(Z)

= [X, [Y, Z]]− [Y, [X,Z]]

= [X, [Y, Z]] + [Y, [Z,X]]

(Jacobi identity) = −[Z, [X,Y ]]

= [[X,Y ], Z] = ad([X,Y ])(Z)

for all X,Y, Z ∈ g.

Exercise 5. Adjoint of nilpotent elements Let g ≤ gln(C) be a Lie subalgebra.

Show that, if X ∈ g is nilpotent then ad(X) ∈ gl(g) is nilpotent.

Solution. This will follow from the following formula

ad(X)n(Y ) =

n∑
k=0

(−1)k
(
n

k

)
Xn−kY Xk (1)

for every X,Y ∈ g, n ≥ 0.
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Indeed, X ∈ g is nilpotent if and only if Xm = 0 for some m ∈ N. Then, by the above formula (1),
ad(X)2m(Y ) = 0 for every Y ∈ g.

We will prove (1) by induction on n. For n = 0 there is nothing to show. So, let us assume that (1) holds
for n and we want to prove it for n+ 1. This is a direct computation:

ad(X)n+1(Y ) = ad(X) (ad(X)n(Y ))

= X · ad(X)n(Y )− ad(X)n(Y ) ·X

= X ·

(
n∑

k=0

(−1)k
(
n

k

)
Xn−kY Xk

)
−

(
n∑

k=0

(−1)k
(
n

k

)
Xn−kY Xk

)
·X

= Xn+1Y +

n∑
k=1

(−1)k
(
n

k

)
Xn−k+1Y Xk −

n−1∑
k=0

(−1)k
(
n

k

)
Xn−kY Xk+1 + (−1)n+1Y Xn+1

= Xn+1Y +

n∑
k=1

(−1)k
((

n

k

)
+

(
n

k − 1

))
Xn−k+1Y Xk + (−1)n+1Y Xn+1

= Xn+1Y +

n∑
k=1

(−1)k
(
n+ 1

k

)
Xn−k+1Y Xk + (−1)n+1Y Xn+1

=

n+1∑
k=0

(−1)k
(
n

k

)
Xn+1−kY Xk
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