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Chapter 1 Introduction

Lie groups are named after Sophus Lie, a Norwegian mathematician of the second half of the
nineteenth century who developed the theory of continuous transformation groups. His original
idea was to develop a theory of symmetries of differential equations parallel to the theory developed
by Galois for algebraic equations, with Lie groups being the continous analogue of permutation
groups in Galois theory. This point of view did not fulfill Lie’s expectations and went in unexpected
directions (see for example the theory of differential fields, D-modules, etc), but Lie groups came
to be an indispensable tool in many branches of mathematics as well as in theoretical physics.

The definition of a Lie group is simple, in that it is a differentiable manifold that is also a
group, such that the group operations are compatible with the manifold structure. One can hence
study Lie groups from a geometrical point of view or from an algebraic point of view. The starting
point of the algebraic point of view is the existence of an algebraic object, namely the Lie algebra
of the Lie group, that turns out to have the geometric interpretation as the tangent space at the
identity of the Lie group. There is also a somewhat different approach, much more elementary, but
also more restrictive, in which one considers only linear Lie groups, that is (closed) subgroups of
GL(n,R) and one develops the whole theory via elementary methods. While this is appropriate for
example in case one is teaching a course to students with limited mathematical background, there
is the problem that, although any Lie group can be locally realized as a linear Lie group, there are
important Lie groups that are not (globally) linear. Our approach will be the more algebraic one. In
fact, as such we will start by considering Lie groups just as topological groups, that is topological
spaces that are also groups, such that the group operations are compatible with the topological
structure. We will see how far one can go for topological groups, and we will see that there are
some miraculous facts that arise from the interplay of these two structures.



Chapter 2 Topological Groups

1. Check Exercise numbering

2.1 Definitions and Examples

Definition 2.1. Topological group

♣

A topological group G is a group endowed with a topology with respect to which the group
operations

G×G −→ G

(g, h) 7−→ gh

and
G −→ G

g 7−→ g−1

are continuous, where G×G is endowed with the product topology.

Remark The following “regularity” properties follow simply from the definition:

The inversion g 7→ g−1 is a continuous bijection. Since its inverse g−1 7→ (g−1)−1 is also
continuous, then it is a homeomorphism.
The left translation

Lg : G→ G

x 7→ gx

and the right translation

Rg : G→ G

x 7→ xg

are continuous and bijective. Since (Lg)−1 = Lg−1 and (Rg)−1 = Rg−1 are also continuous,
Lg and Rg are homeomorphisms. If U 3 e is a neighborhood of the identity (that is a set in
G containing e and an open set Ue 3 e), then LgU is a neighborhood of g homeomorphic to



2.1 Definitions and Examples – 3 –

U . Hence topological groups “look everywhere the same”.
IfG1, G2 are topological groups and ρ : G1 → G2 is a homomorphism, then ρ is continuous
if and only if it is continuous at one point.

Remark. Before we proceed to give concrete examples of topological groups, we remark that there
are simple operations that preserve the class of topological groups.

Any subgroup of a topological group is a topological group (see also Proposition 2.1.3.).
Products of topological groups are topological groups with the product topology.
Quotients of topological groups are also topological groups with the quotient topology.
The semidirect product of topological groups is a topological group. We recall in fact that if
H,N are topological groups and η : H → Aut(N) is a homomorphism such that

H ×N → N

(h, n) 7→ η(h)n

is continuous, the semidirect productH nη N is the setwise Cartesian productH ×N with
the product

(h1, n1)(h2, n2) = (h1h2, n1η(h1)n2)

for all h1, h2 ∈ H and n1, n2 ∈ N , and it is a topological group with the product topology.
Notice that there are other characterizations of a semidirect product. We recall these here
since we will be using it in the sequel.

Lemma 2.1

♥

LetG be a topological group,H < G a closed subgroup andN ⊴ G a closed normal
subgroup. The following are equivalent:

1. There exists a homomorphism η : H → Aut(N) such that G = H nη N ;
2. G is a group extension of N by H , that is there exists a short exact sequence

{e} //N //G //H //{e} .

that splits, that is the composition p ◦ i : H → G/N of the embedding
i : H ↪→ G and the natural projection p : G → G/N is an isomorphism of
topological groups.

Example 2.1 Any group with the discrete topology is a topological group. In this case any subset
is open and any map to any other topological group is continuous.

Example 2.2 The vector space (Rn,+) with the componentwise addition is a commutative

-
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topological group in the Euclidean topology.

Example 2.3 The non-zero real numbers and the non-zero complex numbers, (R∗, ·) and (C∗, ·),
are commutative topological groups with the topology induced by the Euclidean topology.

Example 2.4 Let us denote by Rn×n the vector space of n×nmatrices with real coefficients and
let us define

GL(n,R) := {A ∈ Rn×n : detA 6= 0} .

ThenGL(n,R) is an open set inRn×n and it inherits fromRn×n the Euclidean topology. With this
topology GL(n,R) is a topological group. In fact the topology on Rn×n, and hence on GL(n,R)
is such that if (Ak)k∈N ⊂ GL(n,R) is a sequence, then

Ak → A if and only if (Ak)ij → Aij

for all 1 ≤ i, j ≤ n. Since if A,B ∈ GL(n,R)

(AB)ij =

n∑
k=1

AikBkj ,

this means that the multiplication is continuous. Since

(A−1)ij =
detMji

detA
,

where Mji is the (j, i)-minor matrix obtained by removing the i-th row and the j-th column and
by multiplying by (−1)i+j , then the inversion is also continuous.

Example 2.5 In the Example 2.4 we used that R is a topological field, that is the sum, the
multiplication and the inversion are continuous, and as a consequence, the topology on Rn×n

induces a topology on GL(n,R). Likewise, if F is any topological field, then GL(n,F) is a
topological group. Examples of topological fields are R,C,Qp and finite fields. Here Qp is the
field of p-adic integers, which can be defined as the field of fractions of the ring of p-adic integers
Zp defined in Example 2.10.

Example 2.6 Let X be a compact Hausdorff space. Then

Homeo(X) := {f : X → X : f is a homeomorphism}

is a topological group with the compact-open topology (see Definition A.5).

IfX is only locally compact but not compact, thenHomeo(X) need not be a topological group.
If howeverX is locally compact but also locally connected, thenHomeo(X) is a topological group.
This includes for example all manifolds. Likewise, if X is a proper metric space (that is a metric
space in which closed balls of finite radius are compact), then HomeoX is a topological group.

-
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Example 2.7 Let (X, d) be a compact metric space and let

Iso(X) := {f ∈ Homeo(X) : d(f(x), f(y)) = d(x, y) for all x, y ∈ X} .

Then Iso(X) ⊂ Homeo(X) is a (closed) subgroup and hence a topological group (Exercise 1.).

Example 2.8 We showed in Example 2.4 that GL(n,R) is a topological group when it inherits
the Euclidean topology as a subspace of Rn×n. We show now that GL(n,R) is a topological
group also with respect to the compact-open topology (and in fact the two topologies coincide, see
Exercise 2.). In fact, since GL(n,R) < Homeo(Rn) and Rn is a proper metric space, then the
compact-open topology on GL(n,R) < Homeo(Rn) is the topology of the uniform convergence
on compact sets. If (Ak)k∈N ⊂ GL(n,R), and Ak → A uniformly on compact set, then A is
linear, so that GL(n,R) is a (closed) subgroup of Homeo(Rn) and is hence a topological group.
Notice that for the limit of a sequence of linear functions to be linear, it is actually enough that the
sequence converges pointwise.

Example 2.9 LetM be a smooth manifold. Then

Diffr(M) := {f ∈ Homeo(M) : f, f−1 are continuous and differentiable r times}

is a subgroup of Homeo(M), hence a topological group, which however is not closed in the
compact-open topology. We can consider however the Cr-topology, that is the topology according
to which (fn)n∈N

Cr

−→ f if in any local chart ψ : U → Rn, U ⊂ M , the sequence (fn ◦ ψ−1)n≥1

and all its partial derivatives up to order r converge uniformly on compact sets to the corresponding
derivatives of f ◦ ψ−1. With this topology Diffr(M) is a topological group that is complete in a
natural sense.

Example 2.10 Let Λ be a partially ordered set and let (Gλ)λ∈Λ be a family of groups such that
for every λ1, λ2 ∈ Λ with λ1 ≤ λ2 there exists a homomorphism

Gλ2
ρλ2,λ1 //Gλ1

satisfying the following properties:

1. for any λ ∈ Λ, ρλ,λ = Id|Gλ
;

2. for any λ1, λ2 ∈ Λ, there exists λ3 ∈ Λ with λ1 ≤ λ3 ≤ λ2;
3. ρλ3,λ1 = ρλ2,λ1 ◦ ρλ3,λ2 for all λ1 ≤ λ2 ≤ λ3.

Then the inverse limitG of the projective system ((Gλ)λ∈Λ, ρλ2,λ1) is defined as the unique smallest
topological groupG such that for all λ ∈ Λ there exists a continuous homomorphism ρλ : G→ Gλ

-
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with the property that the diagram

G
ρλ2 //

ρλ1   A
AA

AA
AA

A Gλ2

ρλ2,λ1||zz
zz
zz
zz

Gλ1

(2.1)

commutes, ρλ1 = ρλ2,λ1 ◦ ρλ2 . One can verify that G can be identified with

lim←−Gλ :=

{
(xλ)λ∈Λ ∈

∏
λ∈Λ

Gλ : ρλ2,λ1(xλ2) = xλ1

}
.

Points in lim←−Gλ are said to be compatible. If the (Gλ)λ∈Λ are topological groups, so is
∏
λ∈ΛGλ

with the product topology and, since lim←−Gλ is a (closed) subgroup of
∏
λ∈ΛGλ, it is a topological

group as well with the induced topology.

Of course if the (Gλ)λ∈Λ are compact then by Tychonoff theorem also lim←−Gλ is compact.
Moreover, if the (Gλ)λ∈Λ are discrete, then lim←−Gλ is totally disconnected, that is the connected
sets are the points. In fact, let C ⊂ G be a connected set. Since ρλ : G→ Gλ is continuous, then
ρλ(C) is connected and hence a point, say xλ ∈ Gλ. By the commutativity of the diagram (2.1)
the sequence (xλ)λ∈Λ must be compatible and unique, so that C is the singleton {(xλ)λ∈Λ}.

If the groups in the projective system (Gλ)λ∈Λ are finite, the resulting inverse limit is called
profinite. It follows from the previous observation that profinite groups are compact and totally
disconnected. An important example is the group of p-adic integers Zp, which is a profinite group
under addition. In fact Zp is the inverse limit of the projective system

((Z/pnZ), (ρn,m : Z/pnZ→ Z/pmZ)n≥m) ,

where ρn,m is the natural reduction mod pm homomorphism. One can check that the topology
onZp is the same as the topology arising from the p-adic valuation onZp and with this topologyZp
is a topological ring. By the characteristic property of Zp there are maps ρn : Zp → Z/pnZ which
hare continuous ring homomorphisms. The kernel of ρn is the ideal pnZp which is open since
Z/pnZ is discrete. Since

⋂
n≥1 p

nZp = {0}), the sequence {pnZp : n ≥ p} is a fundamental
system of neighborhoods of 0. One shows then:

1. x ∈ Zp is invertible if and only if x /∈ pZp;
2. if U = Z×

p is the group of invertible elements, then every x ∈ Zp r {0} can be written
uniquely as x = pnu, with n ≥ 0 and u ∈ U .

With this at hand, one shows that Zp is an integral domain; its field of fractions is the field QP of

-
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p-adic numbers and equals Zp
[
1
p

]
. It is a locally compact non-discrete Hausdorff field. In fact any

such field of characteristic zero is isomorphic to R, C or a finite extension of Qp. For more details
see [9].

Example 2.11 We consider now three subgroups of GL(n,R) that will turn out to play an
extremely important role.

1. Let

Adet :=



λ1

. . .

λn

 ∈ GL(n,R) : λi 6= 0, for 1 ≤ i ≤ n

 .

Then Adet is an Abelian topological group as it is homomorphic and homeomorphic to
(R∗)n.

2. Let

N :=



1 ∗

. . .

0 1

 ∈ GL(n,R)

 .

be the group of upper triangular matrices with all 1s on the diagonal. Then N is a (closed)
subgroup of GL(n,R) and is hence a topological group. However, in this case N is
homeomorphic to R

n(n−1)
2 as a topological space, but not as a group, as for example N

is not Abelian, unless n ≤ 2.
3. Let

K := O(Rn, 〈 · , · 〉) = {X ∈ GL(n,R) : 〈Xv,Xw〉 = 〈v, w〉 for all v, w ∈ Rn}

= {X ∈ GL(n,R) : ‖Xv‖ = ‖v‖ for all v ∈ Rn}

=
{
X ∈ GL(n,R) : tXX = Idn

}
be the orthogonal group of the usual Euclidean inner product 〈 · , · 〉 or of the usual Euclidean
norm ‖ · ‖ on Rn. This is a topological group as it is a (closed) subgroup ofGL(n,R). The
standard notation for this group is

O(n,R) := O(Rn, 〈 · , · 〉) .

Example 2.12 We may also consider inner products on a vector space with respect to which
vectors might have negative length. Let V be a real vector space and let B : V × V → R be a
non-degenerate symmetric bilinear form on V , that is:

1. (Non-degeneracy) Given x ∈ V there exists y ∈ V such that B(x, y) 6= 0;

-
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2. (Symmetry) B(v, w) = B(w, v) for all v, w ∈ V , and
3. (Bilinearity) B(α1v1 + α2v2, w) = α1B(v1, w) + α2B(v2, w) for all v1, v1, w ∈ V and all
α1, α2 ∈ R.

Incidentally, given such a non-degenerate symmetric bilinear form is equivalent to choosing a self-
adjoint isomorphism λ : V → V ∗ of V with its dual V ∗ given by B(v, w) = λ(v)w. If Q is the
quadratic form associated to B, Q(v) := B(v, v), the orthogonal group of (V,B) or of (V,Q) is
defined as

O(V,B) = {A ∈ GL(V ) : B(Av,Aw) = B(v, w), for all v, w ∈ V }

= {A ∈ GL(V ) : Q(Av) = Q(v), for all v ∈ V } .
This is a topological group as it is a (closed) subgroup of GL(V ).

Recall that one can always choose a basis of V so that B can be written as

Bp(v, w) = −
p∑
j=1

vjwj +
n∑

j=p+1

vjwj (2.2)

for some fixed p. Then B is positive definite if and only if p = 0. If V = Rn and Bp is as in (2.2),
then it is customary to use the notation

O(p, q) := O(V,Bp) .

Notice that in the above discussion it is essential that V is a real vector space, since instead
over the complex numbers all O(V,B) are isomorphic once the dimension of V is fixed. In fact
we can perform a change of basis

(e1, . . . , ep, ep+1, . . . , en) 7→ (ıe1, . . . , ıep, ep+1, . . . , en)

so that in the new basis the bilinear form reads

B(v, w) =

n∑
j=1

vjwj . (2.3)

The orthogonal group of the symmetric bilinear form in (2.3) is denoted by

O(n,C) = O(V,B) ,

where now V is a complex n-dimensional vector space.

Example 2.13 Let V be a complex vector space and h : V × V → C a Hermitian inner product,
that is a positive definite Hermitian complex valued form that is linear in the first variable and

-
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antilinear in the second. The unitary group U(V, h) is defined as

U(V, h) :={X ∈ GL(V ) : h(Xv,Xw) = h(v, w) for all v, w ∈ V }

={X ∈ GL(V ) : X∗ = X−1} ,
where X∗ denotes the adjoint with respect to h. Notice that if X ∈ U(V, h), then | detX| = 1. If
h : Cn × Cn → C is the standard Hermitian inner product

h(x, y) :=

n∑
j=1

xjyj ,

then we use the notation

U(n) := U(Cn, h) .

Example 2.14 Let k be a topological field. The special linear group defined as

SL(n, k) := {X ∈ GL(n, k) : detX = 1}

is a topological group as a subgroup ofGL(n, k). We can thus define subgroups of all of the above
linear groups by taking the intersection with SL(n, k) with the appropriate field. So for example

SO(n,R) := SL(n,R) ∩O(n,R)

SO(p, q) := SL(p+ q,R) ∩O(p, q)

SO(n,C) := SL(n,C) ∩O(n,C)

SU(n) := SL(n,C) ∩U(n) .

Notice that the subgroup N in Example 2.11 is in SL(n,R). Moreover A := Adet ∩ SL(n,R) is
also an important non-trivial subgroup of SL(n,R).

Example 2.15 Let H be a complex separable Hilbert space (see Definition A.8). The space of
unitary operators ofH

U(H) :={U : H → H : U−1 = U∗}

={U : H → H : UU∗ = U∗U = Id}
is a topological group with the strong operator topology.

2.2 Compactness and Local Compactness

The Examples 2.1, 2.2 and 2.3 are obviously locally compact. Likewise the Examples 2.4,
2.11 and 2.12 are also locally compact because of Lemma A.2, as well as Example 2.5 if F is

-
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locally compact.

Example 2.16 (See Example 2.6) The homeomorphism group of a topological space X is not
necessarily locally compact, even if X is compact (see Exercise 3.).

Example 2.17 (See Example 2.8) Contrary to the homeomorphism group, the isometry group of
a metric space X is as “good” as the space itself. In other words, if X is compact, then Iso(X) is
compact and if X is locally compact, then Iso(X) is locally compact (Exercise 4.). So Iso(X) is
always much much smaller than Homeo(X).

The proof of the first assertion follows immediately from Ascoli–Arzelà’s Theorem (see
Theorem A.1). In fact, from the chain of inclusions

Iso(X) ⊂ Homeo(X) ⊂ C(X,X)

it follows that Iso(X) is compact if it is an equicontinuous totally bounded family, which is obvious
since it consists of isometries and X is compact.

Example 2.18 (See Example 2.11.3. and 2.12) We mentioned already that O(p, q) is locally
compact since it is a (closed) subgroup ofGL(p+q,R). The question now is whether it is compact
and we will show that O(p, q) is compact if and only if p = 0 or q = 0.

1. Let p = 0 and let O(0, n) = O(n,R). Let us write A ∈ O(n,R) as A = ((c1), . . . , (cn)),
where cj = Aej for 1 ≤ j ≤ n. Thus {c1, . . . , cn} is an orthonormal basis in Rn. In
particular ‖cj‖2 = 1, so that |Aij | ≤ 1. Thus O(n,R) is bounded in Rn×n. On the other
hand, by definition

O(n,R) = {A ∈ Rn×n : 〈Av,Aw〉 = 〈v, w〉 = for all v, w ∈ Rn} =−1 (Id) ,

where f : Mn×n →Mn×m is defined as f(A) := AtA, so that O(n,R) is closed and hence
compact by the Heine–Borel Theorem.

2. Let us assume now that pq 6= 0 and we will show that in this case O(p, q) is not compact
since it is not bounded. In fact we can write for n = p+ q

O(p, q) := {A ∈ Rn×n : Qp(Av) = Qp(v) for all v ∈ R} ,

where

Qp(v) = −
p∑
j=1

v2j +

n∑
j=p+1

v2j .

-
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Consider for example the case p = 1, so that

Q1(v) = −v21 +
n∑
j=2

v2j

with respect to the basis (e1, . . . , en). Consider now the change of basis

e′1 :=e2 − e1

e′2 :=e2 + e1

e′j :=ej for 3 ≤ j ≤ n ,
and denote by V the vector space Rn with this new basis. On V the quadratic form will now
take the form

Q′
1(v

′) = −(v′1 − v′2)2 + (v′1 + v′2)
2 +

n∑
j=3

v′j
2
.

The matrix

As :=


s 0 t0n−2

0 1
s

t0n−2

0n−2 0n−2 Idn−2

 (2.4)

clearly satisfies

Q′
1(Asv) = Q′

1(v)

so that As ∈ O(V,Q′
1). Moreover one can show that the subgroup {As : s > 0} is

closed, which shows that O(V,Q′
1) is not compact. The general argument for n > p ≥ 1 is

analogous.

Example 2.19 The special linear group SL(n,R) is a locally compact group since it is closed in
GL(n,R), but it is not compact since the matrix At in (2.4) belongs to SL(n,R) as well.

Example 2.20 (See Example 2.10) Profinite groups are compact.

Example 2.21

1. The one-dimensional torus

T := {z ∈ C : |z| = 1}

with the usual multiplication is a compact Abelian topological group isomorphic to

SO(2,R) =

{(
cos θ sin θ

− sin θ cos θ

)
: θ ∈ [0, 2π)

}

-
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via the isomorphism

SO(2,R) −→ T

X 7−→ eıθ .

2. The n-dimensional torus Tn is also a compact Abelian topological group.

Example 2.22 We emphasise that U(n) 6= O(n,C). In fact:

U(n) preserves the usual Hermitian inner product on Cn, Thus

U(n) = {X ∈ GL(n,C) : ∗XX = Idn} ,

where ∗X = tX and it is compact.
O(n,C) preserves a non-degenerate symmetric bilinear form on Cn so that

O(n,C) := {X ∈ GL(n,C) : tXX = Idn}

and O(n,C) is not compact for n ≥ 2. The argument to see this is exactly the same as for
O(p, q).

Example 2.23 Let B : C2n × C2n → C be the skew-symmetric bilinear form on C2n given
by B(x, y) =

∑
1≤p≤n

xpyn+p − xn+pyp, where x = (x1, . . . , x2n) and y = (y1, . . . , y2n). The

symplectic group Sp(2n,C) is defined as the subgroup of GL(2n,C) of matrices that leave B

invariant. If F =

(
0 In

−In 0

)
, then

Sp(2n,C) := {A ∈ GL(2n,C) : B(x, y) = B(Ax,Ay) for all x, y ∈ C2n}

= {A ∈ GL(2n,C) : tAFA = F} .
Related to Sp(2n,C) there are also the following groups

Sp(2n) := Sp(2n,C) ∩U(2n) ,

which is compact, and

Sp(2n,R) := Sp(2n,C) ∩GL(2n,R) = {A ∈ GL(2n,R) : tAFA = F}.

Example 2.24 We get back to the space of unitary operators of a complex separable Hilbert space
H.

Lemma 2.2
If H is a complex separable Hilbert space, then the space of continuous unitary operators
U(H) is a topological group that is locally compact if and only if dimH < ∞, in which

-
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♥case it is compact.

Proof (⇐) Let us assume that dimH = n <∞. Then

U(H) = U(n) ,

which is compact.

(⇒) We prove the assertion by contradiction. A basis neighborhood of Id ∈ U(H) in the
strong operator topology is of the form

UF,ϵ := {T ∈ U(H) : ‖Tu− u‖ < ε for all u ∈ F} ,

where F ⊂ H is a finite set and ε > 0. If U(H) is locally compact, the neighborhood UF,ϵ is
contained in a compact set C. We will show that the assumption that H is infinite dimensional
leads to a contradiction.

We writeH = 〈F 〉 ⊕ 〈F 〉⊥. Then an obvious verification shows that the subgroup(
Id 0

0 U(〈F 〉⊥)

)
⊂ UF,ϵ ,

since if T ∈

(
Id 0

0 U(〈F 〉⊥)

)
, then Tu = u for all u ∈ F . But then

U(〈F 〉⊥) '

(
Id 0

0 U(〈F 〉⊥)

)
⊂ UF,ϵ ,

that is also U(〈F 〉⊥) must be contained in a compact set and hence be compact. But if F ⊂ H is
finite and H is infinite dimensional, then 〈F 〉⊥ must be infinite dimensional. We show now that
the unitary group of an infinite dimensional Hilbert space cannot be compact.

Claim 2.2.1. If H is an infinite dimensional separable Hilbert space, then U(H) cannot be
compact.

By contradiction let us assume that U(H) is compact in the strong operator topology. If we
can find a sequence (Tn)n∈N ⊂ U(H) of unitary operators converging to zero in the weak operator
topology, that is such that 〈Tnu, v〉 → 0 for all u, v ∈ H, then by our assumption we could find
subsequence (Tnk

)k∈N that converges in the strong operator topology to a unitary operator T . On
the other hand (Tnk

)k∈N converges weakly to zero, which implies that T = 0, a contradiction.

Thus, in order to complete the proof, we need to show that if H is infinite dimensional
and separable we can find a sequence of unitary operators (Tn)n∈N that converges to zero in

-
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the weak operator topology. Let H = L2(R) and let T ∈ L2(R) be the translation by one,
Tf(x) := f(x − 1). Then if f, g ∈ L2(R), 〈Tnf, g〉 → 0. In fact, the space of C∞ compactly
supported functions onR is dense in L2(R) and 〈Tnf, g〉 is very small as soon as n is large enough
that the supports of Tnf and of g are almost disjoint.

2.3 General Facts about Topological Groups

The simple fact of requiring that the group operations are continuous has a plethora of
interesting consequences, of which we illustrate here the most important ones.

Definition 2.2. Symmetric neighborhood

♣

A neighborhood U of the identity e ∈ G in a topological group is symmetric if g−1 ∈ U
whenever g ∈ U .

Proposition 2.1
Let G be a topological group. Then

1. If V is a neighborhood of the identity e ∈ G, there exists a symmetric neighborhood
U of the identity contained in V .

2. If V is a neighborhood of the identity e ∈ G, there exists a symmetric neighborhood
U of the identity such that U2 = U−1U ⊂ V .

3. If H < G is a subgroup, then its closure H is also a subgroup
4. If G is connected any discrete normal subgroup is central.

-
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♠

5. The connected component G◦ of the identity is a closed normal subgroup.
6. Every open subgroup is closed.
7. IfG is connected andU is any neighborhood of the identity e ∈ G, thenG = ∪∞n=1U

n.

Note that the converse of Proposition 2.1.6. is not true. For example R < R2 is a closed
subgroup that is not open.

Proof (1) is immediate by taking U := V ∩ V −1 and (2) is also immediate from the continuity
of the multiplication and from (1).

(3) Since the multiplication and the inversion are continuous, then

m(H ×H) = m(H ×H) ⊆ m(H ×H) = H

i(H) ⊆ H .

(4) Let D be a discrete normal subgroup and, for h ∈ D fixed, let us define the continuous map
γh : G → D by γh(g) := ghg−1. We want to show that γh(g) ≡ h and this will follow from the
connectedness of G and the discreteness ofD. In fact, since G is connected, γh is continuous and
D is discrete, then image(γh) must be one point. Since γh(e) = ehe−1 = h, then γh(g) = h for
all g ∈ G. Thus ghg−1 = h for all g ∈ G, so that gh = hg for all g ∈ G, that is D is central.

(5) Let G◦ be the connected component of the identity e ∈ G. Since the multiplication
m : G◦ × G◦ → G is continuous and G◦ × G◦ is connected, then m(G◦ × G◦) is connected.
But e ∈ m(G◦ × G◦), so that m(G◦ × G◦) ⊂ G◦, that is G◦ is closed under multiplication.
Likewise the image of i : G◦ → G◦ is connected and contains e, so that i(G◦) ⊂ G◦. Thus G◦ is
a group.

To see thatG◦ is closed, observe thatG◦ ⊂ G◦. ButG◦ is connected and contains the identity
in G so that G◦ ⊂ G◦. Thus G◦ = G◦.

If g ∈ G, consider now the continuous map defined by the conjugation cg : G◦ → G,
cg(h) = ghg−1. Since G◦ is connected, cg(G◦) is connected, hence contained in G◦, which
means that G◦ is normal.

(6) Let H < G be an open subgroup. If Lg : G → G is the left multiplication by g ∈ G, by
continuity of the multiplication LgH is also open for all g ∈ G. Thus the union G rH = ∪gH
over all g ∈ GrH is open and hence H is closed.

(7) Obviously ∪∞n=1U
n ⊆ G. Let V ⊂ U be an open symmetric neighborhood of e ∈ G such that

-
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V 2 = V −1V ⊂ U . ThenH := ∪∞n=1V
n ⊆ ∪∞n=1U

n ⊆ G is an open subgroup ofG, hence closed
by (6). Since G is connected, we have equality.

2.4 Local homomorphisms

The content of this section will be heavily used in the correspondence between Lie groups and
Lie algebras presented in § ?? and it is of independent interest.

Definition 2.3. Local homomorphism

♣

Let G,H be topological groups.
1. A local homomorphism is a continuous map ϕ : U → H , where U is a neighborhood

of e ∈ G, such that whenever x, y, xy ∈ U

ϕ(xy) = ϕ(x)ϕ(y).

2. A local homomorphism ϕ : U → H is a local isomorphism if it is bijective onto ϕ(U)

and ϕ−1 : ϕ(U)→ G is continuous.

A natural question to ask is when a local homomorphism ϕ of a topological group can be
extended to a homomorphism.

Theorem 2.1. Extension of local homomorphisms

♥

If G is a simply connected topological group, then any local homomorphism extends
uniquely to a homomorphism G→ H .

Recall that a topological space X is simply connected if it is path-connected and π1(X) is
trivial. Path-connectedness implies connectedness but the converse is not true in general. For
example, let X := [0, 1]× {0} ∪ {{ 1n} × [0, 1] : n ∈ N} ∪ {{0} × [0, 1]r {0} × (0, 1)}.

-
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Then X is connected but not path-connected.

However, if a space is connected and locally path-connected, then it is path-connected. For
example connected manifolds, and in particular connected Lie groups, are automatically path-
connected, since they are locally homeomorphic to Rn, which is path-connected.

Proof We give only the sketch of the proof. For the complete argument see [4]. Let U ⊂ G be a
neighborhood of e ∈ G and ϕ : U → H the local homomorphism that we want to extend. We will
prove the theorem in three steps:

1. We use that G is path-connected to define ϕ on all of G.
2. We use that π1(G) = 0 to show that the extension is well-defined.
3. We show that ϕ is the unique continuous extension of ϕ|U .

1. Since G is path-connected, if g ∈ G, let α : [0, 1] → G be a path from e to g. Choose
a partition of [0, 1] into subintervals Ik := [tk−1, tk], for k = 1, . . . , n, with the property that if
s, t ∈ Ik, then

α(s)−1α(t) ∈ U .

We call such a partition good. We impose a further condition that will be needed only in Step 2.,
but that we may as well impose from the beginning. We choose W be a neighborhood of e ∈ G
contained in U such thatW =W−1 andW 2 ⊂ U and α ⊂ ∪nk=0α(tk)W . Such a partition exists
since [0, 1] is compact and the group operations are continuous, so that there exists a δ > 0 such
that α(s)−1α(t) ∈ U whenever |s − t| < δ. Set xk := α(tk) ∈ α, with x0 = α(0) = e and

-



2.4 Local homomorphisms – 18 –

g = α(tn) = xn. Then

g = (x−1
0 x1)(x

−1
1 x2) . . . (x

−1
n−1xn) ,

with x−1
k−1xk ∈ U .

Then we define

ϕα(g) := ϕ(x−1
0 x1)ϕ(x

−1
1 x2) . . . ϕ(x

−1
n−1xn) ,

To show that ϕα(g) is independent of the partition, notice that adding points to the partition
gives a partition that still has the above defining properties. Let us hence take t ∈ Ik and write
[tk−1, tk] = [tk−1, t] ∪ [t, tk]. Since t ∈ Ik, then α(tk−1)

−1α(t) ∈ U , α(t)−1α(tk) ∈ U and

α(tk−1)
−1α(tk) = α(tk−1)

−1α(t)α(t)−1α(tk) ∈ U ,

so that

ϕα(α(tk−1)
−1α(tk)) = ϕ(α(tk−1)

−1α(t))ϕ(α(t)−1α(tk)) .

2. We show now that ϕα(g) is in fact independent of α. Since π1(G) = 0 we can choose a
homotopy H : [0, 1] × [0, 1] → G with H(0, t) = α0(t) and H(1, t) = α1(t) and set ϕs := ϕαs ,
where αs : [0, 1]→ G is defined as αs(t) := H(s, t). Let δ > 0 be such that

H(s1, t1)
−1H(s2, t2) ∈W

for all s1, s2, t1, t2 ∈ [0, 1] with |s1 − s2| + |t1 − t2| < δ. Then for all s ∈ [0, 1], the partition
{tk}nk=0 := {

k
n}

n
k=0 is good, where we choose n large enough that 1

n <
δ
2 .

-
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Let

A := {s ∈ [0, 1] : ϕs(g) = ϕ0(g)} .

Since 0 ∈ A 6= ∅, it will be enough to show that A is open and closed.

To see that A is closed, we will show that if (sj)j∈N ⊂ A and sj → s for j →∞, then s ∈ A.
Let αsj and αs be the corresponding paths and let {tk}nk=0 be the good partition of [0, 1] chosen
above. By continuity of H , one deduces that

lim
j→∞

αsj (tk) = αs(tk) .

Writing xsj ,k := αsj (tk) and xs,k := αs(tk), and using that the ϕsj are continuous, one deduces
that

lim
j→∞

ϕ(x−1
sj ,k−1xsj ,k) = ϕs(x

−1
s,k−1xs,k) .

Thus

lim
j→∞

ϕsj (g) = lim
j→∞

n−1∏
k=0

ϕ(x−1
sj ,k

xsj ,k+1) =
n−1∏
k=0

ϕs(x
−1
s,kxs,k+1) .

Since each term on the left hand side is equal to ϕ0(g), so is the one on the right hand side.

To see that A is open, let t ∈ A and let s ∈ [0, 1] be close enough to t so that αs ⊂ ∪nj=0xjW ,
where xj := α(tj) were defined at the beginning of the proof. We can define yk := x−1

s,kxt,k ∈W
so that

x−1
s,k−1xs,k = yk−1x

−1
t,k−1xt,ky

−1
k ,

-
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and

ϕs(g) =
n∏
k=1

ϕ(x−1
s,k−1xs,k) =

n∏
k=1

ϕ(yk−1x
−1
t,k−1xt,ky

−1
k ) =

n∏
k=1

ϕ(x−1
t,k−1xt,k) = ϕt(g) .

Thus s ∈ A, that is A is open.

3. It is easy to see that ϕ is continuous. To see that it is a homomorphism, let α be a path from e

to g and β a path from e to h. Then the concatenation of α with gβ is a path from e to gh and by
definition ϕ(gh) = ϕ(g)ϕ(h). The uniqueness follows immediately from Proposition 2.1.7.

2.5 Haar Measure and Homogeneous Spaces

2.5.1 Haar Measure

Let X be a locally compact topological space and G a topological group. A left action of G
on X by homeomorphisms is a homomorphism G→ Homeo(X), that is a map

G×X −→ X

(g, x) 7−→ gx

such that (g2g1)x = g2(g1x) for all g1, g2 ∈ G and x ∈ X . The action is continuous ifG×X → X

is a continuous map, in which case

ϕg : X −→ X

x 7−→ gx

is a homeomorphism with inverse ϕg−1 . If Cc(X) is the space of continuous functions with
compact support and G acts on X , then there is a continuous representation λ : G→ Iso(Cc(X))
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defined by (λ(g)f)(x) := f(g−1x) (see Lemma A.3). LikewiseG acts continuously on the left on
the spaceCc(X)∗ of continuous linear functionals onCc(X), via the contragredient representation
λ∗(g)(Λ))(f) := Λ(λ(g−1)f).

Remark A right G-action on X (g, x) 7−→ xg would induce a right G-action on Cc(X),
(ρ(g)f)(x) := f(xg) and hence on Cc(X)∗, (ρ∗(g)(Λ))(f) := Λ(ρ(g)(f)).

A left (resp. right) action is an action for which, given the product g1g2 acting on X , first g2
acts (resp. g1) followed then by g1 (resp. g2).

Theorem 2.2. Riesz Representation Theorem

♥

LetX be a locally compact Hausdorff topological space. If Λ is a positive linear functional
on Cc(X) (that is Λ(f) ≥ 0 if f ∈ Cc(X) with f ≥ 0), then there exists a unique regular
Borel measure µ on X that represents Λ, that is such that for every f ∈ Cc(X),

Λ(f) =

∫
X
f(x) dµ(x) .

(For the definition of regular Borel measure see Definition A.7.)

Notice that the action on the left of a group G on Λ is reflected in the action on the measure
given by the contragredient action and the identification of functionals with regular Borel measures
given by Riesz Representation Theorem. In other words the G-action on measures on Cc(X) is
denoted by (g, µ) 7→ g∗µ, where

(g∗µ)(A) := µ(g−1A) ,

so that

(λ(g)∗Λ)(f) =

∫
X
f(gx) dµ(x) =

∫
X
f(x) d(g∗µ)(x) =

∫
X
f(x) dµ(g−1x) .

A particular action is the one of a locally compact Hausdorff group on itself.

Definition 2.4. (Haar measure)
A left (resp. right) Haar measure on a locally compact Hausdorff group G is a non-zero
positive linear functional

m : Cc(G)→ C

that is invariant under left (resp. right) translation, that is such that

(g∗m)(f) = m(f)

-
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♣for all f ∈ Cc(G).

In the following we will use the notationsm(f),
∫
G f(x), dm(x) or dx according to what we

want to emphasize or for simplicity.

Theorem 2.3. (Existence and Uniqueness of the Haar measure, 1933)

♥

A left (resp. right) Haar measure on a locally compact Hausdorff group always exists and
is unique up to positive multiplicative constants.

We will verify the uniqueness. However the proof of the existence of the Haar measure in
general is long, technical and does not bring much insight. There are however cases in which the
proof is simple and follows on standard yet useful techniques. This is the case for example for
compact groups (see [13, Theorem 2.2.3]) or for Lie groups (see ??).

Lemma 2.3

♥

Let m be a left Haar measure. If f ∈ Cc(G) and x ∈ G, let f̌(x) := f(x−1). Then
n(f) := m(f̌) is a right Haar measure.

Proof We need to verify that n(ρ(g)(f)) = n(f) for every g ∈ G and for every f ∈ Cc(G).
Notice that

(ρ(g)f )̌)(x) = (ρ(g)f)(x−1) = f(x−1g)

so that

n(ρ(g)f) = m((ρ(g)f )̌) =

∫
G
f(x−1g) dm(x)

=

∫
G
f̌(g−1x) dm(x) =

∫
G
f̌(x) dm(x) = n(f) .

Lemma 2.4

♥

Let G be a locally compact Hausdorff group with left Haar measure m. Then
1. supp(m) = G, and
2. If h ∈ C(G) is such that ∫

G
h(x)ϕ(x) dm(x) = 0

for all ϕ ∈ Cc(G), then h ≡ 0.

Proof (1) Recall that supp(m) := {x ∈ G : for every open set U containing x, m(U) > 0}.
Since m 6≡ 0, there exists f ∈ Cc(G) such that m(f) > 0. Let K := supp(f) with m(K) > 0.
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If G 6= supp(m), then there exists x ∈ G r supp(m) and an open neighborhood U 3 x with
m(U) = 0. But a finite number of translates of U would cover K, so that m(K) = 0, which is a
contradiction.

(2) We show that h(e) = 0 (which is anyway all we need in the proof of the uniqueness of the Haar
measure) and the argument for any other point follows by translation. Let ε > 0. By continuity of
h there exists an open neighborhood V 3 e such that for all g ∈ V

|h(g)− h(e)| < ε .

By Urysohn’s lemma there exists ϕ ∈ Cc(G) such that ϕ ≥ 0, ϕ(e) > 0 and supp(ϕ) ⊂ V . Since∫
G h(g)ϕ(g) dm(g) = 0 for all ϕ ∈ Cc(G), then

|h(e)|
∣∣∣∣∫
G
ϕ(g) dm(g)

∣∣∣∣
=

∣∣∣∣∫
G
h(e)ϕ(g) dm(g)

∣∣∣∣
=

∣∣∣∣∫
G
h(g)ϕ(g) dm(g)−

∫
G
h(e)ϕ(g) dm(g)

∣∣∣∣
≤
∫
G
|h(g)− h(e)|ϕ(g) dm(g)

≤ ε

∫
G
ϕ(g) dm(g) ,

from which it follows that |h(e)| < ε for all ε > 0, that is h(e) = 0.

We remark that we used in the first part of the
proof that G is a topological group. In fact, the
fact that we can cover K with translates of a
neighborhood U of x ∈ G rK is only possible
because we are in a topological group.

Proof [Proof of the uniqueness of the Haarmeasure in Theorem 2.3] Letm be an arbitrary left Haar
measures and n an arbitrary right Haar measure (which exists by Lemma 2.3). Let f, g ∈ Cc(G)
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be such thatm(f) 6= 0 (this certainly exists sincem is non-zero).

m(f)n(g) = m(f)

∫
G
g(y) dn(y)

(1)
= m(f)

∫
G
g(yt) dn(y)

=

∫
G
f(t)

(∫
G
g(yt) dn(y)

)
dm(t)

(2)
=

∫
G

(∫
G
f(t)g(yt) dm(t)

)
dn(y)

(3)
=

∫
G

(∫
G
f(y−1x)g(x) dm(x)

)
dn(y)

(4)
=

∫
G

(∫
G
f(y−1x) dn(y)

)
g(x) dm(x) ,

where we used:

– in (1) that n is right invariant;
– in (2) and in (4) Fubini;
– in (3) the right invariance of n, the left invariance ofm and we set x = yt.

Note that we could use Fubini’s theorem since the support of all functions is compact and hence∫
G×G

|f(t)g(yt)| dm(t) dn(y) <∞

and ∫
G×G

|f(y−1x)g(x)| dm(x) dn(y) <∞

Let us now define wf : G→ R by

wf (x) :=
1

m(f)

∫
G
f(y−1x) dn(y) ,

so that

n(g) =
1

m(f)

∫
G

(∫
G
f(y−1x) dn(y)

)
g(x) dm(x) =

∫
G
wf (x)g(x) dm(x) .

Since the left hand side is independent of f , for all f1, f2 ∈ Cc(X) withm(fi) 6= 0, i = 1, 2, then∫
G
wf1(x)g(x) dm(x)−

∫
G
wf2(x)g(x) dm(x) = 0 .

Since wf1 − wf2 is continuous, by Lemma 2.4 wf (e) is independent of f , so that wf (e) = C for
some C ∈ R. Thus

m(f)C = m(f)wf (e) = m(f)
1

m(f)

∫
G
f(y−1) dn(y) =

∫
G
f(y−1) dn(y) = n(f̌) .

-



2.5 Haar Measure and Homogeneous Spaces – 25 –

If now we choose n(f) := m′(f̌), which is a well-defined left Haar measure by Lemma 2.3, then

m(f)C = m′(f)

for all f ∈ Cc(G) such thatm(f) 6= 0.

Example 2.25

1. The Lebesgue measure on (Rn,+) is the left and right Haar measure.
2. The Lebesgue measure on G := (R>0, ·) is neither left nor right invariant, but

f 7→
∫
G
f(x)

dx

x

defines both the left and the right Haar measure on G.
3. If G is discrete, then the counting measure is both a left and a right Haar measure.

The above examples bring to the question as to when a left Haar measure is also right invariant.
To approach this question let Aut(G) be the group of continuous invertible automorphisms of G
with continuous inverse. Then Aut(G) acts on Cc(G) on the left via

(α · f)(x) := f(α−1(x))

for α ∈ Aut(G), f ∈ Cc(G) and x ∈ G. If m is a left Haar measure on G, one can easily verify
that the linear form

f 7→ m(α · f)

is also a left Haar measure. In fact

m(α · λ(g)(f)) =
∫
G
(α · λ(g)(f))(x) dm(x) =

∫
G
(λ(g)f)(α−1(x)) dm(x)

=

∫
G
f(α−1(g−1x)) dm(x) =

∫
G
(α · f)(x) dm(x) = m(α · f)

Thus there exists a positive constant modG(α) such that

m(α · f) = modG(α)m(f) . (2.5)

Lemma 2.5

♥The function modG : Aut(G)→ (R>0, ·) is a homomorphism.

Proof SinceAut(G) acts onCc(G) on the left, then (αβ) ·f = α ·(β ·f). Then for all f ∈ Cc(G)

modG(αβ)m(f) = m((αβ) · f) = m(α · (β · f))

= modG(α)m(β · f)

= modG(α)modG(β)m(f) .
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Let now consider the conjugation automorphism α = cg, for g ∈ G,

cg : G→ G

x 7→ gxg−1 ,
(2.6)

so that (cg · f)(x) = f(g−1xg). We use the notation ∆G(g) := modG(cg) and we call
∆G : G→ (R>0, ·) the modular function of G. Explicitly the formula (2.5) for α = cg gives

∆G(g)m(f) = m(cg · f) =
∫
G
(cg · f)(x) dm(x) =

∫
G
f(g−1xg) dm(x)

=

∫
G
f(xg) dm(x) = m(ρ(g)f)

so that

m(ρ(g)f) = ∆G(g)m(f) , (2.7)

which shows that the modular function captures the extent to which a given left Haar measure fails
to be right invariant.

Proposition 2.2

♠

Let G be a locally compact Hausdorff topological group with left Haar measure m and let
∆G : G→ R>0 be its modular function. Then

1. ∆G is continuous and
2. for every f ∈ Cc(G)∫

G
f(x−1)∆G(x) dm(x) =

∫
G
f(x) dm(x) .

Proof (1) Since ρ : G→ Iso(Cc(G)) is continuous when Iso(Cc(G)) is given the strong operator
topology, then

lim
x→y
‖ρ(x)f − ρ(y)f‖∞ = 0

for all f ∈ Cc(G) and all x, y ∈ G. It follows that

0 = lim
x→y
|m(ρ(x)f)−m(ρ(y)f)| = lim

x→y
|m(f)| |∆G(x)−∆G(y)| ,

that is ∆G is continuous.
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(2) Let us set f∗(x) := f(x−1)∆G(x) and let us observe that

(λ(g)f)∗(x) = (λ(g)f)(x−1)∆G(x) = f(g−1x−1)∆G(x)

= ∆G(g)
−1f(g−1x−1)∆G(xg) = ∆G(g)

−1f∗(xg)

= ∆G(g)
−1(ρ(g)f∗)(x) .

Notice thatm′(f) := m(f∗) is also a left Haar measure. In fact,

m((λ(g)f)∗) = m(∆G(g)
−1(ρ(g)f∗)) = ∆G(g)

−1m(ρ(g)f∗) = ∆G(g)
−1∆G(g)m(f∗) = m(f∗)

Thus there exists C > 0 such thatm′(f) = Cm(f) and we want to show that C = 1. Since∆G is
continuous, for every ε > 0 there exists a symmetric neighborhood V 3 e such that

|∆G(x)− 1| < ε

for every x ∈ V . Let f ∈ Cc(G) be a symmetric function such that f ≥ 0 and with support in V
and such thatm(f) = 1. Then for every ε > 0

|1− C| = |(1− C)m(f)| = |m(f)−m′(f)| = |m(f)−m(f∗)|
(∗)
= |m(f)−m(∆Gf) = |m((1−∆G)f)| < εm(f) = ε ,

where in (∗) we used that f is symmetric and in (∗∗) that f ≥ 0.

Definition 2.5

♣

A group G is unimodular if ∆G ≡ 1, that is if the left Haar measure and the right Haar
measure coincide.

Since for a left Haar measurem we have by Lemma 2.3 thatm(f̌) is a right Haar integral, the
following is immediate

Corollary 2.1

♥The Haar measure of a group G is inverse invariant if and only if the group is unimodular.

Example 2.26

1. Any locally compact Hausdorf Abelian group is unimodular.
2. Any discrete group is unimodular, since the Haar measure is just the counting measure.
3. Since there are no non-trivial compact subgroups of (R>0, ·), any compact group is

unimodular.
4. We show that GL(n,R) is unimodular. Since GL(n,R) is an open subset of Rn×n, we

consider the restriction dm(X) :=
∏n
i.j=1 dXi,j to GL(n,R) of the Lebesgue measure on

Rn×n, where X = (Xi,j)
n
i,j=1. We claim that | detX|−n dm(X) is both a left and a right

-



2.5 Haar Measure and Homogeneous Spaces – 28 –

Haarmeasure onGL(n,R). In fact, let Tg : Mn×n(R)→Mn×n(R) be defined by Tg(X) :=

gX and let us observe, by writing X = ((v1), (v2), . . . , (vn)), that | det(dTg)| ≡ | det g|n.
Thus ∫

GL(n,R)
(λ(g)f)(X)| detX|−n dm(X)

=

∫
GL(n,R)

f(g−1X)| detX|−n dm(X)

=| det g|−n
∫
GL(n,R)

f(g−1X)| det(g−1X)|−n dm(X)

=| det g|−n
∫
GL(n,R)

f(X)| det(X)|−n| | det(dTg−1(X))|−n dm(X)

=| det g|−n
∫
GL(n,R)

f(X)| det(X)|−n| | det g−1|−n dm(X)

=

∫
GL(n,R)

f(X)| detX|−n dm(X) .

A similar calculation shows the right invariance.
5. We consider the group R>0 nη R, where η : R>0 → Aut(R) is defined by η(a)(b) := ab,

so that the product is (a, b)(a′, b′) = (aa′, b + ab′). Then R>0 nη R is the group of affine
transformations of the real line, (a, b)x = ax + b, where a ∈ R>0 and b ∈ R and can be
identified with the group {(

a b

0 1

)
: a ∈ R>0, b ∈ R

}
acting on R ' {(x, 0) : x ∈ R} ⊂ R2. It is easy to verify that da

a2
db is a left Haar measure

and that daa db is a right Haar measure, so that R>0 nη R is not unimodular.
6. We consider the Heisenberg group Rnη R2, where η : R→ Aut(R2) is defined by

η(x)

(
y

z

)
:=

(
y

z + xy

)

for x ∈ R,

(
y

z

)
∈ R2, so that the group operation is

(
x1,

(
y1

z1

))(
x2,

(
y2

z2

))
=

(
x1 + x2,

(
y1 + y2

z1 + z2 + x1y2

))
.

-
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It is easy to see that it can be identified with the group

1 x z

0 1 y

0 0 1

 : x, y, z ∈ R


and that the Lebesgue measure is both the left and the right Haar measure, so that R nη R2

is unimodular.
7. The group

P :=

{(
a b

0 a−1

)
: a, b ∈ R, a 6= 0

}
(2.8)

is not unimodular since da
a2
db is a left Haar measure and da db is a right Haar measure.

8. Any closed normal subgroup of a unimodular group is unimodular. This follows from the
following proposition.

Proposition 2.3

♠

Let G be a locally compact Hausdorff group and let H ⊴ G be a closed normal subgroup.
Then ∆H = ∆G|H . Thus if G is unimodular, H is also unimodular.

We will prove this later. For the moment we remark that it is essential that H is normal. In
fact, for example GL(2,R) is unimodular, but the subgroup P in (2.8) is not.

Proposition 2.4

♠

Let G be a locally compact Hausdorff topological group with left Haar measure m. Then
m(G) <∞ if and only if G is compact.

Proof (⇐) Since G is compact, the function identically equal to 1 is in Cc(G) Thus m(G) =

m(1) <∞.

(⇒) Sincem is regular andm(G) <∞, there is a compact set C ⊂ G withm(C) < 1
2m(G). But

then sincem(xC) = m(C) for every x ∈ G, xC and C cannot be disjoint, hence x ∈ CC−1, that
is G = CC−1, which is compact.

If G is compact, the Haar measure is usually normalized so thatm(G) = 1.

-
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2.5.2 Homogeneous Spaces of Topological Groups

Let G be a group and H < G a subgroup. Then G acts on the homogeneous space G/H on
the left by translations (g, g′H) 7→ gg′H and the projection p : G → G/H is a G-map, that is it
commutes with the G-action on G and on G/H . If G and H are topological groups, we endow
G/H with the quotient topology, that is U ⊂ G/H is open if and only if p−1(U) ⊂ G is open.
This is the finest topology that makes p continuous.

Proposition 2.5

♠

Let H ≤ G be topological groups. Then:
1. The projection p is open, that is it sends open sets into open sets.
2. The action of G on G/H is continuous.
3. The quotient G/H is Hausdorff if and only if H is closed.
4. If G is locally compact, then also G/H is locally compact.
5. If G is locally compact and H ≤ G is closed, for every compact set C ⊂ G/H there

exists a compact set K ⊂ G such that p(K) = C.

Proof 1. and 2. follow from the definitions and the properties of topological groups.

3. If G/H is Hausdorff, then points are closed. In particular eH ∈ G/H is closed and hence
p−1(eH) = H ≤ G is closed.

Conversely let us suppose thatH is closed and let xH and yH be distinct points inG/H . Then
xHy−1 is a closed set not containing the identity inG. ThusGrxHy−1 is an open neighborhood
of e ∈ G and hence by Proposition 2.1 there exist U an open neighborhood of e ∈ G such
that U−1U ⊂ G r xHy−1. Thus U−1U ∩ xHy−1 = ∅, that is UxH and UyH are disjoint
neighborhood respectively of xH and yH .

4. We have to show that every point in G/H has a compact neighborhood. Let p(x) ∈ G/H and,
since G is locally compact, let x ∈ U ⊂ C with U open and C compact. Then p(U) is open (by
1.), p(C) is compact (since p is continuous) and p(x) ∈ p(U) ⊂ p(C).

5. Let U be an open relatively compact neighborhood of e ∈ G. Then {p(Ux)}x∈G is an open
cover of C and hence there exists a finite subcover C ⊂ ∪nj=1p(Uxj). Then

K :=

n⋃
j=1

Uxj ∩ p−1(C) ⊂ G .

-
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is a compact subset in G such that p(K) = C.

If G acts transitively on a space X , then there is an isomorphism of G-spaces G/Gx → X ,
where Gx = StabG(x) for x ∈ X , given by the map gGx 7→ gx. If X is a topological space
and the action of G on X is continuous, then the G-map is also continuous. If G is a locally
compact second countable Hausdorff space andX is locally compact Hausdorff, then the bijection
is a homeomorphism.

Example 2.27

1. Let us consider the action of O(n + 1,R) on Sn ⊂ Rn+1. Notice that g ∈ O(n + 1,R) if
and only if tgg = Id, which implies that ‖gv‖ = ‖v‖ for all v ∈ Rn+1; in particular Sn is
preserved byO(n+1,R). Moreover this action is transitive, that is O(n+1,R)en+1 = Sn

and in fact even the SO(n+ 1,R)-action is transitive on Sn. The stabilizer of en+1 ∈ Sn is

SO(n+ 1,R)en+1 = {g ∈ SO(n+ 1,R) : gen+1 = en+1} '

{(
SO(n,R) 0

0 1

)}
< SO(n+ 1,R) ,

so that

Sn ' SO(n+ 1,R)/ SO(n,R) .

2. The upper half planeH2
R := {x+ ıy ∈ C : y > 0} is an SL(2,R)-space, with the SL(2,R)-

action given by fractional linear transformations: if g =

(
a b

c d

)
∈ SL(2,R) and z ∈ H2

R,

then (
a b

c d

)
z :=

az + b

cz + d
.

It is easy to see that the action is transitive since(
y1/2 xy−1/2

0 y−1/2

)
ı = x+ ıy

and that SL(2,R)ı = SO(2,R). Thus the map SL(2,R)/ SO(2,R) → H2
R identifies the

upper half plane as the SL(2,R)-orbit of ı.
3. The group SL(2,R) acts transitively also on R ∪ {∞} with P = SL(2,R)∞, where P is as

in (2.8).
4. We generalize now the action in (2). Let

Sym+
1 (n) := {X ∈Mn×n(R) : X is symmetric, positive definite and det(X) = 1} .

Then SL(n,R) acts transitively on Sym+
1 (n) via gX = gXgt, for g ∈ SL(n,R) and

-
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X ∈ Sym+
1 (n). Moreover

SL(n,R)Idn = {g ∈ SL(n,R) : gIdngt = Idn} = SO(n,R) ,

so that

SL(n,R)/ SO(n,R) ' Sym+
1 (n) .

If n = 2 this is nothing but the example in (2) (Exercise).
5. We generalize now the example in (3). We consider

Pn−1(R) = P(Rn) := {V ⊂ Rn : is a subspace with dimV = 1}

with the transitive SL(n,R)-action. In this case

SL(n,R)<e1> =

{(
a x

0 A

)
: a ∈ R, a 6= 0, x ∈ Rn−1, A ∈ GL(n− 1,R), detA = a−1

}
and we identify SL(n,R)/ SL(n,R)<e1> with Pn−1(R). If n = 2 this is the example in (3).

6. Let

L := {Zf1 + · · ·+ Zfn : fj ∈ Rn, for j = 1, . . . , n, det(f1, . . . , fn) = 1}

be the space of lattices of covolume one in Rn (see Definition 2.7).

Figure 2.1: A lattice in L with f1 =

(
1
0

)
and f2 =

(
1
1

)

The group SL(n,R) acts transitively on L via

g(Zf1 + · · ·+ Zfn) := Zgf1 + · · ·+ Zgfn

-
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and the stabilizer of Ze1 + · · · + Zen is SL(n,Z). Thus L can be identified with
SL(n,R)/ SL(n,Z).

We prove now that if H ⊴ G is closed and normal, then ∆G|H = ∆H . We start with the
following lemma, only the first part of which (the definition) will be immediately used.

Lemma 2.6

♥

Let G be a locally compact Hausdorff group and H < G a closed subgroup. If f ∈ Cc(G)
and dh is the left Haar measure on H then

fH(ẋ) :=

∫
H
f(xh) dh

is in Cc(G/H). Moreover the linear operator AH : Cc(G) → Cc(G/H) defined as
AH(f) := fH is surjective.

Proof The function fH is obviouslywell defined as it is independent of the choice of representative
of the coset xH . Moreover it is continuous¹and supp fH ⊂ p(supp f). Thus fH ∈ Cc(G/H).

To prove the surjectivity, let F ∈ Cc(G/H), let C ⊂ G/H be the compact support of F and
let K ⊂ G be a compact set such that p(K) = C (which exists by Proposition 2.5.5.). We will
define f ∈ Cc(G) such that fH = F . Let η ∈ Cc(G) such that 0 ≤ η ≤ 1 and η|K ≡ 1, which
exists by Urysohn’s Lemma ([7]). Then by definition

((F ◦ p) · η)H = F · ηH

so that F = ((F◦p)·η)H
ηH

. Thus we define

f(g) :=


(F◦p)(g)·η(g)
(ηH(p))(g)

if (ηH(p))(g) 6= 0

0 if (ηH ◦ p)(g) = 0 ,

which we need to verify to be in Cc(G). In fact obviously supp f ⊂ supp η. Moreover f is
continuous as it is continuous on two open sets U1 and U2 whose union is G, namely on

1. U1 := {g ∈ G : (ηH◦))(g) 6= 0} by definition and on
2. U2 := G rKH , where it vanishes. If fact if g ∈ G rKH , then p(g) /∈ C = suppF , so

that (F ◦ p)(g) = 0.

So the only thing to verify is that G = U1 ∪ U2. In fact, if g ∈ G and g /∈ U1, then

¹A function f : G → C is right (resp. left) uniformly continuous if for every ϵ > 0 there exist a neighborhood V of
e ∈ G such that |f(s) − f(t)| < ϵ for every ts−1 ∈ V (resp. t−1s ∈ V ). Right uniform continuity follows from
Lemma ?? applied to X = G and the action of G on G by left translations: an analogous statement holds for left
uniform continuity.

-



Appendix Preliminaries

p.131 (paragraph before definition A.11) The explanation for the coordinate chart of the tangent
bundle is, if I am not mistaken, not correct. At least the definition that I know, is the one
where the isomorphism Rn → TpM isn’t any isomorphism, but the one induced by the
coordinate chart (φ,U) that is dφ.

A.1 Topological Preliminaries

We recall now a few well known concepts from topology.

Definition A.1. Basis of a topology

♣

A basis B of a topology T ⊂ P(X) on a set X is a family B ⊂ T such that every element
of T is the union of elements of B.

Example A.1 The family

B := {Br(x) : r ∈ Q≥0, x ∈ Qn}

is a basis of the Euclidean topology on Rn.

Lemma A.1. Characterization of a basis

♥

Let X be a set and T ⊂ P(X) a topology. A family B ⊂ T is a basis if and only if
X = ∪Y ∈BY , and
If B1, B2 ∈ B and B1 ∩ B2 6= ∅, then for every x ∈ B1 ∩ B2 there exists B3 ∈ B
with x ∈ B3 ⊂ B1 ∩B2.

Then the topology is the family consisting of all possible unions of elements in B.

Definition A.2. Subbasis

♣

A subbasis S of a topology T ⊂ P(X) on a set X is a family of sets such that the family B
obtained by taking all finite intersections of elements in S is a basis.
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Definition A.3. Hausdorff topology

♣A topological space X is Hausdorff if any two distinct points have disjoint neighborhood.

Definition A.4. Local Compactness

♣

A topological spaceX is locally compact if each point has a neighborhood basis consisting
of compact sets, that is if for every x ∈ X there exists a set Bx of compact neighborhoods
of x such that any neighborhood Ax of x contains an element Bx ∈ Bx.

Lemma A.2

♥

Let X be a locally compact Hausdorff topological space. Every closed subset and every
open subset of X is locally compact with respect to the induced topology.

For any topological spaces X,Y one can define different topologies on the set

Y X := {f : X → Y } ,

or more specifically on the set

C(X,Y ) : {f : X → Y : f is continuous} .

Definition A.5

♣

Let X,Y be topological spaces.
The sets

S(C,U) := {f ∈ C(X,Y ), f(C) ⊂ U}

where C ⊂ X is a compact set and U ⊂ Y is an open set, form a subbasis of the
compact-open topology on C(X,Y ).
The sets

S(x, U) := {f ∈ C(X,Y ) : f(x) ∈ U}

form a subbasis of the topology of the pointwise open (or pointwise convergence)
topology on C(X,Y )

-
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Remark Let X be a topological space and (Y, d) a metric space. The sets

BC(f, ε) := {g ∈ C(X,Y ) : sup
x∈C

d(f(x), g(x)) < ε} ,

where C ⊂ X is a compact set, ε > 0 and f ∈ C(X,Y ) form a basis of the compact-open
topology. The set BC(f, ε) consists of all functions g ∈ C(X,Y ) that are ε-close to f in all points
in the compact set C. It is easy to see that if {fn} ⊂ C(X,Y ), then fn → f in the compact-open
topology if and only if fn|C → f |C uniformly on all compact sets C ⊂ X . In other words, if Y is
a metric space the compact-open topology is nothing but the topology of the uniform convergence
on compact sets.

In general the pointwise convergence is weaker than the uniform convergence on compact sets,
which, in turn, is weaker that the uniform convergence. Of course the first two coincide on a set
with the discrete topology and the last two on a compact set.

A.2 Functional Analytical Preliminaries

Theorem A.1. Ascoli–Arzelà’s Theorem

♥

Let (X, dX) and (Y, dY ) be compact metric spaces and let us consider the Banach space
C(X,Y ) of continuous functions f : X → Y with the metric

d(f, g) := sup
x∈X

d(f(x), g(x)) .

Let F ⊂ C(X,Y ) be a subfamily of continuous functions. Then F is relatively compact if
and only if it is equicontinuous, that is for every ε > 0 there exists δ > 0 such that

dY (f(x), f(y)) < ε

for every f ∈ F , whenever dX(x, y) < δ.

This is the form of the theorem that we need. Notice however that

X need not be a metric space for the theorem to hold, and
If Y is not compact then the theorem still holds, provided we add the assumption that the set
{f(x) : f ∈ F} i s relatively compact for all x ∈ X .

If E,F are normed spaces, let us consider the normed space

B(E,F ) := {T : E → F : T is continuous and linear } ,

with ‖T‖ := sup∥x∥E=1 ‖T (x)‖F .

-
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If T ∈ B(E,F ) is bijective and the inverse is continuous, then T is an isomorphism ofE with
F . If in particular E = F , then T is an automorphism of E, and we denote Aut(E) ⊂ B(E) the
subspace of automorphisms. If in particular E is of finite dimension n, then Aut(E) = GL(E).

Definition A.6. Topologies on B(E,F )

♣

Let (Tn)n∈N ∈ B(E,F ).
1. We say that Tn → T in the norm topology if and only if limn→∞ ‖Tn − T‖ = 0,

where ‖ · ‖ is the norm on B(E,F ).
2. We say that Tn → T in the strong operator topology if and only if limn→∞ ‖Tnx −
Tx‖F = 0 for all x ∈ E.

3. We say that Tn → T in the weak operator topology if limn→∞ λ(Tnx) = λ(Tx) for
all λ ∈ F ∗.

In particular if E is a normed vector space over k = R or k = C and F = k, then B(E, k)
is nothing but the dual E∗ of E and the strong operator topology on B(E, k) is nothing but the
weak-∗-topology on E∗.

If H is a Hilbert space and E = F = H, then the space of isometric isomorphisms of E
Iso(E) is the space of unitary operators U(H). On U(H) the strong operator topology and the
weak operator topology coincide.

Let G be a topological group and E a topological vector space. A continuous representation
of G on E is a homomorphism π : G → Aut(E), which is continuous with respect to a topology
on Aut(E). If in particular, E is a normed space, then π is an isometric representation if
π : G→ Iso(E). An isometric representation of a Hilbert space is called unitary.

Lemma A.3

♥

LetG be a topological group acting continuously on a locally compact spaceX . LetCc(X)

be the space of continuous functions with compact support on X with the norm topology.
Then the representation π : G→ Iso(Cc(X)) defined by

π(g)f(x) := f(g−1x)

for x ∈ X and g ∈ G is a continuous representation if Iso(Cc(X)) is endowed with the
strong operator topology.

If E,F are topological vector spaces and T ∈ B(E,F ), the adjoint T ∗ : F ∗ → E∗ is defined

-
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by

T ∗(λ) := λ ◦ T .

In particular, if E is a topological vector space on which G acts via a representation π, and E∗ is
endowed with the weak-∗-topology, then

π∗(g) := π(g−1)∗ : E∗ → E∗

is continuous.

Definition A.7. regular Borel measure

♣

1. Let X be a locally compact Hausdorff space. A measure on the σ-algebra of Borel
sets of X is called a Borel measure if it is finite on every compact set.

2. A Borel measure µ is said to be regular if
(a). for every Borel set Y , µ(Y ) = supµ(K) over all compact subsets K ⊆ Y , and
(b). for every σ-bounded set Y , µ(Y ) = inf µ(U) over all open σ-bounded sets

U ⊇ Y for every set U in B(X) .

Recall that a set Y is σ-bounded if it is contained in the countable union of compact sets.

Definition A.8. Separability

♣

Let H be a complex Hilbert space. We say that H is separable if it contains a countable
dense subset.

A.3 Differentiable Manifolds

Definition A.9. Paracompactness

♣

A topological space X is paracompact if every open covering {Uα}α∈A has a locally finite
refinement, that is there exists a covering {Vβ}β∈B such that

For every β ∈ B there exists at least one α ∈ A such that Vβ ⊂ Uα, and
for every p ∈ X there exists a neighborhood W of x that intersects finitely many Vβ .

For us a smooth manifold will always be Hausdorff, locally Euclidean with countable basis and
paracompact.

-
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Definition A.10. Germs

♣

Given p ∈ M , we denote by C∞(p) the algebra of germs of smooth functions at p. This is
the algebra of smooth functions defined in an open neighborhood of p, where two functions
are identified if they coincide on a neighborhood of p.

Recall that the tangent space TpM to the manifold M at the point p is the set of all linear
functionals Xp : C

∞(p)→ R such that for all α, β ∈ R and all f, g ∈ C∞(p):

1. Xp(αf + βg) = αXp(f) + βXp(g) (linearity);
2. Xp(fg) = Xp(f) · g(p) + f(p)Xp(g) (Leibniz rule).

The linear mapXp ∈ TpM is called a tangent vector toM at p and the tangent space TpM has the
structure of real vector space with operations:

1. (Xp + Yp)(f) := Xp(f) + Yp(f);
2. (αXp)(f) := αXp(f).

Let f : M → N be a smooth map of smooth manifolds and let p ∈ M . The differential of f
at p is the linear map dpf : TpM → Tf(p)N defined as follows: ifXp ∈ TpM and φ ∈ C∞(f(p)),
then

dpf(Xp) := Xp(φ ◦ f) .

In other words, the tangent vector dpf(Xp) applied to the function φ takes the derivative of the
function φ ◦ f at the point p ∈M in the direction of the tangent vector Xp.

The tangent bundle toM is TM =
⋃
p∈M

TpM . It can be made into a manifold with coordinate

charts (U × Rn, ϕ × ψ), where (U,ϕ) is a coordinate chart on M and ψ : Rn → TpM is an
isomorphism. With this smooth structure the projection π : TM →M is smooth.

Definition A.11. Smooth vector field
A smooth vector field is smooth section of the tangent bundle

X : M → TM

π ◦X = idM . In other words, it is a map

X : M → TM

p 7→ Xp ∈ TpM

-
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♣

that assigns to each point p ∈M a tangent vector Xp to M at p, and such that the map

Xf : M → R

p 7→ Xp(f)

is smooth, for every f ∈ C∞(M).

It can be proven that if p ∈M , then

Xp(f) = dpf(Xp) , (A.1)

that is Xp(f) is the differential of the function f at the point p in the direction of Xp.

Definition A.12

♣

Let ϕ :M → N be a smooth map of smooth manifolds. Then:
1. ϕ is an immersion if dpϕ is non-singular for all p ∈M .
2. ϕ(M) is a submanifold or an immersed sumbanifold of N if ϕ is a one-to-one

immersion.
3. If ϕ is a one-to-one immersion that is also a a homeomorphism of M onto its image,

then ϕ is an embedding and ϕ(M) is an embedded submanifold.

In the following pictures in green we see two immersion and in red two immersed submani-
folds.

An embedded submanifold has the smooth structure coming from the ambient manifold and
the concept of embedded submanifold are essentially equivalent to that of regular submanifold that

-
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we recall now.

Definition A.13. (Regular Submanifold)

♣

Let M be a smooth m-dimensional manifold.
1. A subset N ⊂ M has the submanifold property if every p ∈ N has a coordinate

neighborhood (U,ϕ) in M with local coordinates x1, . . . , xm such that
(a). ϕ(p) = 0;
(b). ϕ(U) is an open cube (−ε, ε)m of side length 2ε;
(c). ϕ(U ∩N) = {x ∈ (−ε, ε)m : xn+1 = · · ·xm = 0}.

2. A regular submanifold of M is any subset N ⊂ M with the submanifold property
and the smooth structure determined by the coordinate neighborhoods defined by the
submanifold property.

Example A.2 The following is not a regular submanifold of R2.

-
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The point of a regular submanifold is that the topology and the differentiable structure are
those derived fromM .

-
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