EXERCISE SHEET 1

(1) Let \mathfrak{gl}_n be the algebra of $n \times n$ matrices over complex numbers \mathbb{C} . Define a norm on \mathfrak{gl}_n ,

$$\| \cdot \| \colon \mathfrak{gl}_n \to \mathbb{R}_{\geq 0}$$
$$A = (a_{i,j})_{i,j} \mapsto \sqrt{\sum |a_{i,j}|^2},$$

where $|a_{i,j}|^2 := a_{i,j} \cdot \overline{a}_{i,j}$ for a complex number $a_{i,j}$ and its conjugate $\overline{a}_{i,j}$.

(1.1) Show that $\|\cdot\|$ is submultiplicative, i.e., for a pair of matrices A and B we have

$$\|A \cdot B\| \le \|A\| \cdot \|B\|.$$

(1.2) Deduce that the series

$$\sum_{k \ge 0} \frac{A^k}{k!} = I_n + A + \frac{A^2}{2} + \dots$$

converges in \mathfrak{gl}_n with respect to the norm $\|\cdot\|$. The limit is the *exponential* of A,

$$e^A := \sum_{k \ge 0} \frac{A^k}{k!}.$$

(2) Given a matrix A. Show that

$$\det(e^A) = e^{\operatorname{tr}(A)}.$$

Conclude that e^A is always invertible. (Hint: try a diagonal matrix first.)

- (3) (3.1) Show that if $[A, B] = A \cdot B B \cdot A = 0$, then $e^A \cdot e^B = e^{A+B}$.
 - (3.2) Find a pair of matrices A and B, such that

$$e^A \cdot e^B \neq e^{A+B}.$$

- (4) Given Lie algebras $\mathfrak{g}, \mathfrak{h}$ and \mathfrak{a} , such that \mathfrak{a} is abelian. We say that \mathfrak{h} is a central extension of \mathfrak{g} by \mathfrak{a} , if
 - there exists a sequence of Lie-algebra homomorphisms

$$\mathfrak{a} \stackrel{\iota}{\longrightarrow} \mathfrak{h} \stackrel{\pi}{\longrightarrow} \mathfrak{g},$$

such that $\ker(\pi) = \operatorname{Im}(\iota);$

elements of a commute with elements of h, i.e., [a, h]_h = 0 (identifying a with Im(ι)).

Two central extensions \mathfrak{h} , \mathfrak{h}' of \mathfrak{g} by \mathfrak{a} are equivalent, if there exists a Liealgebra isomorphism between \mathfrak{h} and \mathfrak{h}' which commutes with π and ι ,

(4.1) Let $\beta: \mathfrak{g} \to \mathfrak{h}$ be a linear map (not necessarily a Lie-algebra homomorphism), such that $\pi \circ \beta = \mathrm{id}_{\mathfrak{g}}$. Define

$$\begin{split} \Theta \colon \mathfrak{g} \times \mathfrak{g} & \to \mathfrak{h}, \\ \Theta(x,y) := [\beta(x), \beta(y)] - \beta([x,y]) \end{split}$$

Show that Θ is skew-symmetric, $\Theta(x, y) \in \mathfrak{a}$, and it satisfies the following property:

- $(\star) \qquad \quad \Theta(x,[y,z])+\Theta(y,[z,x])+\Theta(z,[x,y])=0.$
- (4.2) Conversely, given a skew-symmetric bilinear map $\Theta: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{a}$ which satisfies the property (*). Show that

 $[(x,z),(y,z')]_{\Theta} := ([x,y]_{\mathfrak{g}},\Theta(x,y)), \quad \text{for } (x,z),(y,z') \in \mathfrak{g} \oplus \mathfrak{a},$

is a Lie bracket on the vector space $\mathfrak{g} \oplus \mathfrak{a}$, such that $(\mathfrak{g} \oplus \mathfrak{a}, [,]_{\Theta})$ is a central extension of \mathfrak{g} by \mathfrak{a} . We call such Θ a *cocycle*.

(4.3) Show that for a cocycle Θ associated to a central extension \mathfrak{h} via the construction from (4.1), there is an equivalence of central extensions,

$$(\mathfrak{h}, [,]_{\mathfrak{h}}) \cong (\mathfrak{g} \oplus \mathfrak{a}, [,]_{\Theta}).$$

(4.4) Consider

$$\Theta_{\mu}(x,y) := \mu([x,y])$$

for some linear map $\mu \colon \mathfrak{g} \to \mathfrak{a}$. Show that Θ_{μ} is a cocycle, and that there exists a Lie-algebra isomorphism

$$(\mathfrak{g} \oplus \mathfrak{a}, [,]_{\Theta_{\mu}}) \cong (\mathfrak{g} \oplus \mathfrak{a}, [,]),$$

where $(\mathfrak{g} \oplus \mathfrak{a}, [,])$ is the direct sum of Lie algebras (i.e., the trivial central extension). More generally, show that for any cocycle Θ and a linear map μ , there exists a Lie-algebra isomorphism

$$(\mathfrak{g} \oplus \mathfrak{a}, [,]_{\Theta + \Theta_{\mu}}) \cong (\mathfrak{g} \oplus \mathfrak{a}, [,]_{\Theta}).$$

(4.5) Consider the vector spaces of all cocycles Θ and cocycles of the form Θ_{μ} for a linear map $\mu : \mathfrak{g} \to \mathfrak{a}$,

$$Z^{2}(\mathfrak{g},\mathfrak{a}) = \{ \text{ cocycles } \Theta \},\$$

$$B^{2}(\mathfrak{g},\mathfrak{a}) = \{ \text{ cocycles } \Theta_{\mu} \}.$$

Conclude that the equivalence classes of central extensions of \mathfrak{g} by \mathfrak{a} are in one-to-one correspondence with the quotient

$$H^2(\mathfrak{g},\mathfrak{a}) = Z^2(\mathfrak{g},\mathfrak{a})/B^2(\mathfrak{g},\mathfrak{a}).$$