
EXERCISE SHEET 2

(1) Schur’s lemma states that over an algebraically closed field every endomor-
phism of a finite-dimensional irreducible representation of a Lie algebra is a
scalar multiple of the identity (i.e., it is given by multiplication with a scalar).
The proof of Schur’s lemma relies on the existence of eigenvalues of matrices.
Eigenvalues might not exist in the infinite-dimensional case, hence the same
proof cannot be applied.

We will now establish an infinite-dimensional version of Schur’s lemma,
called Dixmier’s lemma (it specialises to Schur’s lemma over C).
Lemma (Dixmier’s lemma). Consider a Lie algebra g over C. Let V be an ir-
reducible g-representation of countable dimension. Then every endomorphism
of V is a scalar multiple of the identity.

Proof.
(1.1) Let Endg(V ) be the algebra of endomorphisms of the representation

V . Show that Endg(V ) is a division algebra, i.e., every non-zero
element of Endg(V ) has a multiplicative inverse.

(1.2) Given an element ϕ ∈ Endg(V ). Show that for all non-zero v ∈ V ,
ϕ is completely determined by ϕ(v). That is for all non-zero v ∈ V ,
the following holds: if ϕ(v) = ϕ′(v), then ϕ = ϕ′. (Hint: use the
irreducibility of V .)

(1.3) Deduce that there exists an injective linear map
Endg(V ) ↪→ V,

and, in particular, that Endg(V ) is of countable dimension.
(1.4) Show that every division algebra D of countable dimension over C

must be C itself. (Hint: assuming the contrary, argue that D must
contain a transcendental element which can be used to deduce a con-
tradiction to the countability of dimension; uncountability of C must
be used at some point.)

(1.5) Conclude that Dixmier’s lemma holds. Observe that the assumption
that the Lie algebra is defined over C is necessary, as the same proof
does not apply to a countable algebraically closed field.

□

(2) Let g be a Lie algebra of countable dimension over C. We call an element
c ∈ g central if

[c, x] = 0, for all x ∈ g.

Show that a central element c acts by a multiple of the identity on all irre-
ducible representations of g.
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(3) Let Heis = {an,1 | n ∈ Z} be the infinite-dimensional Heisenberg algebra.
Let B = C[x1, x2, . . .] be the Bosonic Fock space of Heis. Consider a repre-
sentation V of Heis with a non-zero vector v ∈ V which satisfies the following
properties:

an · v = 0 for n > 0
a0 · v = µv for µ ∈ C

1 · v = v.

Show that the linear map

ϕ : B → V, p(x1, . . . , xn) 7→ p(a−1, . . . ,
a−n

n
) · v

is a homomorphism of representations of Heis.

(4) Recall an involution ω on Heis,
ω : Heis ∼−→ Heis, ω(λan) = λa−n, ω(λ1) = λ1.

Define a pairing on the Bosonic Fock space B,
⟨p | q⟩ := ⟨ω(p) · q⟩, p, q ∈ B,

where ⟨ ⟩ is the constant term of a polynomial. Show that ⟨ | ⟩ is a non-
degenerate Hermitian pairing, such that monomials xk1

1 . . . xkn
n form an or-

thogonal basis with

⟨1 | 1⟩ = 1, ⟨xk1
1 . . . xkn

n | xk1
1 . . . xkn

n ⟩ =
n∏

j=1
kj !jkj .


