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1. Introduction

1.1. What are they? Let us start by giving a very rough explanation of two terms
that appear in the title of this course. Lie algebras capture a very natural notion - the
one of a symmetry. More precisely, an infinitesimal symmetry. The idea of Integrable
systems, on the other hand, is more intricate to explain. At a first approximation, it
means a differential equation that can be solved exactly.

Lie algebras = Infinitesimal Symmetries

Integrable systems ≈ Exactly solvable differential equations

However, such characterisation is neither precise nor does it capture the essence of
Integrable systems. In fact, there is no mathematical definition of Integrable systems
that would encapsulate the full richness of their world. Nevertheless, there are several
symptoms for a differential equation to be an integrable system:

• existence of many symmetries (conserved quantities),
• ability to give explicit solutions,
• presence of algebraic geometric (polynomials).

The properties above are still quite vague and subject to interpretation depending
on the example. So, perhaps, the best way to understand what an Integrable system
is to show one - this is the main objective of the course. In fact, we will be mainly
concerned with one particular Integrable system (and maybe a few others which are
very closely related to it). Namely, the Kadomtsev–Petviashvili (KP) equation:
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This is a non-linear1 partial differential equation with two space variables and one
time variable. In physics, it arises in various ways, but most prominently as a model
for shallow-water waves (i.e., when the wavelength of waves is much greater than the
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depth of waters). Its attractiveness from a mathematical point of view stems from
the fact that it perfectly satisfies all expectations one would have for an integrable
system. It is therefore considered the role model for all Integrable systems with
infinitely many degrees of freedom (i.e., its solutions are functions, not points of
some affine space Rn).

1.2. What this course is about? It is not obvious at all from the first glance, but
the KP equation possesses a lot of symmetries. In fact, so many that it is completely
characterised by them. In the same way that a circle is completely and uniquely
characterized (up to the radius) as the shape that is invariant under rotations.

In particular, by uncovering these symmetries, we will be able to provide various
explicit solutions to it, among which are n-solitons. This is where the theory of
Lie algebras and Integrable systems intersect, as the former is the language for the
symmetry transformations of the latter.

Aim: Understand the KP equation through representation theory.

Our approach will be almost completely algebraic. As a consequence, this course is
about:

• Representation theory of Lie algebras,
• Combinatorics,
• A little bit of algebraic geometry,
• A tiny bit of PDE.

And it is not about:

• Functional analysis,
• PDE,
• Mathematical physics.

The approach presented in this course comes late in the history of the KP equation.
And arguably it would not be possible without the immense body of work that had
existed prior to that and did not involve any representation theory. Unfortunately,
we will not cover many other aspects of the KP equation and Integrable systems
in general. In particular, tools like Lax pairs, Inverse-scattering method, Spectral
curves, etc., will be either completely ignored or mentioned very briefly.

The representation-theoretic approach to the KP equation was discovered by Sato
[Sat81] and developed by Date–Jimbo–Kashiwara–Miwa [DJKM81, DJKM82]. It will
take us most of the course to set up the right language. We believe that the best
source for this are the lecture notes by Kac [KR87]. However, we will also compliment
them by the book written by Date, Jimbo and Miwa themselves [MJD00].

1.3. Overview of the course. The course will roughly consist of four parts.

1.3.1. Lie algebras and representation theory. The first part will be about Lie algebras
and their representation theory. After recalling the basic notions of Lie algebra theory,
we will study in more detail three infinite-dimensional Lie algebras:

(1) Heisenberg algebra Heis,
(2) Virasoro algebra Vir,
(3) Algebra of infinite matrices a∞.
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The last2 is the Lie algebra of symmetry transformations of the KP equation,

a∞ = {(aij)i,j∈Z | aij = 0, if |i− j| ≫ 0}.
All three algebras are intimately related, and will need to know a few things about
all of them (but less for the Virasoro). The main result of this part will be so-called
Boson-Fermion correspondence, which is a natural isomorphism of two representa-
tions of a∞,

C[z±, x1, x2, . . . ] ∼= ∧∞V.

The left-hand side are Bosons - symmetric tensors of a vector space with a countable
basis, also known as polynomials with infinitely many variables. The right-hand
side are Fermions - antisymmetric tensors, also known as the infinite wedge. This
correspondence will allow us to translate something complicated on the Boson side to
something much simpler on the the Fermion side. This “something complicated” on
the Boson side will include the KP equation. To do it, we will need a few combinatorial
tools, which is the subject of the second part.

1.3.2. Combinatorics. In the second part, we will cover some basic combinatorial
tools, like:

• Partitions,
• Schur polynomials,
• Young tableaux,
• Maya diagrams.

They will provide the necessary language to pass between Bosons and Fermions, as
well as the building blocks for understanding the KP equation.

1.3.3. Integrable systems. In the third part, we will analyse the KP equation. Firstly,
we will show that a∞ is the algebra of symmetry of the KP equation, in the sense
that it acts on the space of its solutions. The KP equation lives on the Boson side,
while its Fermionic counterpart is something more elementary - a quadratic equation
similar to a Plücker relation in finite dimensions.

Using this, we will construct two kinds of explicit solutions:

• Rational solutions,

u(x, y, t) = 2
∂2

∂x2
log(Sλ(x, y, t, c4, c5, . . . )),

where Sλ is a Schur polynomial associated to a partition λ written in the
basis of power symmetric polynomials.

• Solitons, e.g.,

u(x, y, t) =
1

2cosh(12(x+ y + t))2
.

Moreover, we will describe the space of its solutions explicitly via a certain Infinite-
dimensional Grassmannian (Sato Grassmannian),

Gr = {solutions of the KP equation}.

2To be more precise, its central extension.
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We will thereby show that the KP equation possesses all properties mentioned in
Section 1.1.

We will also briefly mention other aspects of the KP equation and how they are
related to the approach presented in the course. Namely, the Lax pairs and the
Inverse-scattering method.

1.3.4. Further applications. Lastly, we will talk about some applications of the the-
ory. A particularly beautiful and quite accessible direction is the Hurwitz theory.
Hurwitz theory counts (ramified) covers of a sphere. The resulting numbers have
deep representaiton-theoretic and algebro-geometric meanings. This will be based on
a very short paper by Okounkov [Oko00].

1.4. Symmetries of equations.

1.4.1. Group symmetries. The best way to end the introduction is to explain what
one means by symmetries of an equation. To this end, one cannot think of anything
more symmetric than a circle (in fact, in some sense, it is a baby version of the KP
equation),

x2 + y2 = r2. (1)

Let GL2 be the group of invertible 2× 2 matrices with real coefficients. We say that
A ∈ GL2 is a symmetry of (1), if

for all

(
x
y

)
∈ R2, A ·

(
x
y

)
∈ (1), if and only if

(
x
y

)
∈ (1).

It is easy to see that

{A | A is a symmetry of (1)}
is a subgroup of GL2. Moreover, it is exactly the orthogonal group O2, and its
elements are given by rotations and reflections

T (θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, R(θ) =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

1.4.2. Infinitesimal symmetries. Let us define a vector

(
x(θ)
y(θ)

)
as follows:(

x(θ)
y(θ)

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.

By differentiating with respect to θ, we obtain that

(
x(θ)
y(θ)

)
solves the following

differential equation:
d

dθ

(
x(θ)
y(θ)

)
=

(
0 −1
1 0

)(
x(θ)
y(θ)

)
. (2)

By solving the differential equation (2), we also recover the rotation matrix T (θ). In

particular, the matrix T =

(
0 −1
1 0

)
can be viewed as the first-order approximation
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of T (θ). More precisely, we have the following relation between these matrices,

eθT = I2 + θ

(
0 −1
1 0

)
+

θ2

2

(
0 −1
1 0

)2

+ · · · =
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Moreover, the fact that T (θ) is a symmetry of the circle (1) can be rephrased in terms

of (2): If the initial condition

(
x(0)
y(0)

)
solves (1), then the solution of (2) given by(

x(θ)
y(θ)

)
solves (1) for all θ. While this seems just a more complicated way to say the

same thing, this viewpoint generalises much better than the one from Section 1.4.1.
Overall, we can rightfully call the matrix T as a infinitesimal symmetry of (1).

1.4.3. Structure of infinitesimal symmetries. If

{Symmetries of (1)} = Group,

what structure does

{Infinitesimal symmetries of (1)}
possess? Unfortunately, at this stage we exhausted the capacity of (1) to illustrate
the full depth of these notions, as in this case, infinitesimal symmetries are essentially
a vector space spanned by T . Hence let us consider a more general situation by taking
exponents of an arbitrary matrix. Let

M1,M2 ∈ gln = {n× n matrices}

be two matrices. Consider their exponents eM1 and eM2 , which are invertible matrices.
The Baker–Campbell–Hausdorff formula says that the product of eM1 and eM2 can
be expressed as follows,

eM1 · eM2 = eM1+M2+[M1,M2]+
1
12

[M1−M2,[M1,M2]]+...,

where

[M1,M2] = M1 ·M2 −M2 ·M1.

In particular, if we treat M1 and M2 as the first-order terms of eM1 and eM2 , then
[M1,M2] can be interpreted as the first-order version of the matrix multiplication.
The vector space gln together with the bracket [ , ] is an example of Lie algebra.
Hence the answer to the question above is

{Infinitesimal symmetries} = Lie algebra.

1.5. Infinitesimal symmetries of equations with infinite degrees of freedom.

In the previous example, the vector

(
x
y

)
lived in a finite-dimensional space R2. We

now want to replace a two-vector by a two-variable function u(x, y). The equation
(1) has a direct generalisation, which is the Laplace equation,

∂2u

∂x2
+

∂2u

∂y2
+ r2u = 0, u = u(x, y) ∈ C∞(R2).
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Rotation matrices also act on functions u(x, y) by precomposition,

(T (θ) · u)(x, y) := u

(
T (−θ)

(
x
y

))
,

one can readily see that this is also a symmetry of the Laplace equation in the same

sense as before. We define an analogue of the vector

(
x(θ)
y(θ)

)
, namely, the function

of three variables

u(x, y, θ) := (T (θ) · u)(x, y).
By differentiating and using the composition rule of differentiation, we obtain an
analogue of (2),

∂

∂θ
u(x, y, θ) =

(
x
∂

∂y
− y

∂

∂x

)
u(x, y, θ) := x

∂

∂y
u(x, y, θ)− y

∂

∂x
u(x, y, θ).

We see that the linear operator
(
x ∂
∂y − y ∂

∂x

)
plays the same role as the matrix(

0 −1
1 0

)
. Moreover, by solving the differential equation above we recover the oper-

ator T (θ) acting on functions in the same way as before,

e
θ
(
x ∂
∂y

−y ∂
∂x

)
= T (θ).

An important lesson to take away is that differential operators can be viewed as
certain infinitesimal symmetries of functions. It is precisely these kinds of symmetries
that we will explore and that the KP equation possesses.

2. Lie algebras

2.1. Definition. We start with recalling what Lie algebras are. In this lecture, we
will be concerned with finite-dimensional Lie algebras. In fact, we will not need
anything from the theory of finite-dimensional Lie algebras apart from a few basic
notions. Throughout the course, we will be working with Lie algebras over the field
of complex numbers C.

Definition 2.1. Let (g, [ , ]) be C-linear space with C-bilinear map

[ , ] : g× g → g.

The pair (g, [ , ]) is a Lie algebra if

(1) [ , ] is skew-symmetric,
(2) [ , ] satisfies the Jacobi identity,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ g.

We call [ , ] a commutator or Lie bracket. Very often we will drop it from the
notation.

2.2. Examples.
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2.2.1. Abelian Lie algebras. The simplest example is an abelian Lie algebra,

(V, [ , ]) [x, y] = 0 for all x, y ∈ V,

where V is some vector space. Despite its apparent simplicity, it is one of the most
important kinds of Lie algebras.

2.2.2. Lie algebras and associative algebras. An associative C-algebra is a C-vector
space with a bilinear product, (A,− · −),

− · − : A×A → A,

which satisfies the associativity axiom,

(x · (y · z)) = ((x · y) · z).

The vector space A carries a Lie-algebra structure defined as follows,

[x, y] = x · y − y · x.

The fact that this bracket satisfies the Jacobi identity follows from the associativity
axiom. A more explicit example of this construction is given by the algebra of n× n
matrices,

gln = {n× n complex matrices}.

which is the mother of all Lie algebras. More basis-independently, for a vector space
V , the vector space of linear endomorphisms,

gl(V ) = {f : V → V },

is an associative algebra, such that the product is given by composition of maps.
Hence it also carries a Lie bracket by the construction above.

2.2.3. Classical Lie algebras. The following classical Lie algebras are the core of the
theory of finite-dimensional Lie algebras.

(1) sln = {x ∈ gln | tr(x) = 0},
(2) on = {x ∈ gln | x+ xT = 0}, where xT is the transpose of a matrix,

(3) sp2n = {x ∈ gln | Jn · x+ xT · Jn = 0}, where Jn =

(
0 −In
In 0

)
.

By exponentiating matrices above, we land into

(1) Special linear group Sln,
(2) Orthogonal group On,
(3) Symplectic group Spn.

More specifically, sl2 admits the following explicit presentation:

sl2 = {e, h, f}, h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.



8 INFINITE-DIMENSIONAL LIE ALGEBRAS AND INTEGRABLE SYSTEMS

2.3. Basic notions.

Definition 2.2. Let g be a Lie algebra. A vector subspace h ⊆ g is a Lie subalgebra
if

[x, y]g ∈ h, for all x, y ∈ h.

It is an ideal if
[x, y]g ∈ h, for all x ∈ g and y ∈ h.

Example 2.3. All classical Lie algebras are Lie subalgebras of gln, so is the abelian
Lie algbera of diagonal matrices.

Definition 2.4. A C-linear map f : g → h is a Lie algebra homomorphism if

f([x, y]g) = [f(x), f(y)]h.

Example 2.5. For any Lie algebra g, there exist a Lie algebra homomorphism,

g → gl(g), x 7→ [x,−],

where gl(g) is the Lie algebra of linear endomorphisms of the vector space g. The
fact that this map is indeed a Lie algebra homomorphism is equivalent to the Jacobi
identity.

Lemma 2.6. If f : g → h is a Lie algebra homomorphism, then

(1) kef(f) is an ideal,
(2) Im(f) is a Lie subalgebra.

Proof. A simple verification of definitions. □

Definition 2.7. If g, h are Lie algebras, then the direct sum of vector spaces g ⊕ h
carries a natural Lie bracket given by

[(x, y), (x′, y′)]g⊕h = ([x, x′]g, [y, y
′]h).

We call the resulting Lie algebra a direct sum of Lie algebras.

The notion of direct sums of Lie algebras admits the following generalisation, if
one of the Lie algebras is abelian.

Definition 2.8. Given Lie algebras g, h and a, such that a is abelian. We say that
h is a central extension of g by a if

(1) there exists a sequence of Lie algebra homomorphisms

a h g,ι π

such that Ker(π) = Im(ι),
(2) elements of a commute with elements of h, i.e., [a, h]h = 0 (identifying a with

Im(ι)).

Example 2.9. Consider two abelian Lie algebras,

g = {x, y}, a = {z}.
We define a central extension of g by a as follows,

h = {x, y, z}, [x, y] = z, [z, x] = [z, y] = 0.
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The Lie algebra h is called (small) Heisenberg algebra. It also admits the following
presentation in terms of 3× 3 matrices,

x =

0 1 0
0 0 0
0 0 0

 , y =

0 0 0
0 0 1
0 0 0

 , z =

0 0 1
0 0 0
0 0 0


Later, we will define its infinite-dimensional generalisation Heis by adding infinitely
many pairs of elements x and y with the commutation relation as above.

In the exercise sheet, we show that central extensions are classified by bilinear
skew-symmetric maps

Θ: g× g → a,

which satisfy the following property:

Θ(x, [y, z]) + Θ(y, [z, x]) + Θ(z, [x, y]) = 0.

2.4. Representations of Lie algebras.

Definition 2.10. A representation of a Lie algebra is a pair (V, ρ), a vector space V
and a Lie algebra homomorphism

ρ : g → gl(V ).

Very often we will drop ρ from the notation. We will also write

x · v := ρ(x)(v).

Lie algebras are understood via their representations. Practically, this means that
the study of Lie algebras is very often (if not always) reduced to expressing (or, in
other words, representing) them in terms of some matrices. Moreover, in many situa-
tions, representations rather than Lie algebras themselves are the objects that we care
about. If we view Lie algebras as infinitesimal symmetries, then their representations
are realisations of these symmetries acting on some particular space.

Example 2.11. We have already seen an important representation associated to any
Lie algebra, namely, the adjoint representation

g → gl(g), x 7→ [x,−].

Example 2.12. Since all classical Lie algebras from Section 2.2.3 are subalgebras of
a Lie algebra of matrices, they come with a natural representation given by acting
on Cn.

Example 2.13. Consider the Lie algebra sl2 from the end of Section 2.2.3. Let

Vn = {xkyn−k | 0 ≤ k ≤ n}

be the vector space of homogenous polynomials of total degree n in two variables x
and y. There exists an action of sl2 on Vn by associating

e 7→ x
∂

∂y
, f 7→ y

∂

∂x
, h 7→ x

∂

∂x
− y

∂

∂y
.
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Definition 2.14. Let V1 and V2 be representations of a Lie algebra g. A homomor-
phism of representations is a linear map f : V1 → V2, such that

f(x · v) = x · f(v), for all x ∈ g and v ∈ V.

We say that two representations are isomorphic (or equivalent) if f is bijective.

Definition 2.15. Let V be a representation of a Lie algebra g. A subpresentation
of V is a vector subspace V ′ ⊆ V , such that

x · v ∈ V ′, for all x ∈ g and v ∈ V ′,

a subrepresentation of V is also a representation of g.
We say that a representation V is irreducible, if it does not have any subrepresen-

tations other than V itself or {0}.

Lemma 2.16. If f : V1 → V2 is a homomorphism of representations, then Ker(f)
and Im(f) are subrepresentations.

Proof. A simple verification of definitions. □

Let us consider the representations Vn of sl2 introduced in Example 2.13. We will
show that they are irreducible. This will involve some ideas that we will extensively
use later.

Lemma 2.17. Representations Vn of sl2 are irreducible.

Proof. Firstly, by using the definition of these representations, we see that repeated
application of the operators e and f on monomials have the following form:

ek · xn−kyk = k!xn. (3)

fk · xn =
n!

(n− k)!
xn−kyk (4)

Given now a non-zero subrepresentation 0 ̸= V ⊆ Vn. Consider an arbitrary non-zero
element v of V ,

v = λxn−kyk + ...

where “. . . ” stands for summands whose powers of y are strictly smaller than k (we
always can pick a summand with the leading power of y). Then by (3), we get

ek · v = λk!xn,

while by (4), we obtain that for all 0 ≤ h ≤ n,

fh · (ek · v) = λk!
n!

(n− k)!
xn−hyh.

Since Vn is spanned by elements xn−hyh, we obtain that V = Vn. Hence Vn is
irreducible. □

The element xn ∈ Vn is refereed to as the highest-weight vector. While e and
f are called raising and lowering operators, respectively. This terminology aims to
capture the fact that by acting by e and f we raise and lower the powers of x, and
the element with the highest power of x is xn. Such structure is very often present
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in the representation theory of Lie algebras.

Note that in the proof above we also slightly abused the notation writing ek and
fk. Since sl2 is not an associative algebra, but a Lie algebra, the only legal operations
in sl2 are addition and commutation [ , ]. What we really meant is ρ(e)k and ρ(f)k,
which is permitted because ρ(e)k and ρ(f)k are endomorphisms of a vector space (or,
after choosing a basis, matrices). In fact, one can define an object which formally
contains powers of elements of a Lie algbera g, this will allow us to talk about symbols
like ek and fk without resorting to specific representations.

Definition 2.18. Given a Lie algebra g. The universal enveloping algebra associated
to g is

U(g) :=
⊕
k≥0

g⊗k/I, I = ⟨x⊗ y − y ⊗ x− [x, y]⟩.

More explicitly, this is a tensor algebra quotient by the ideal generated by x ⊗ y −
y ⊗ x− [x, y].3 It has an associative product given by the tensor multiplication,

(x1 ⊗ . . .⊗ xn) · (y1 ⊗ . . .⊗ ym) := x1 ⊗ . . .⊗ xn ⊗ y1 ⊗ . . .⊗ ym.

In particular, symbols ek and fk from the proof of Lemma 2.17 can be treated as
elements of U(sl2). Moreover, given a representation ρ : g → gl(V ), by the virtue of
the definition of U(g), there exists a homomorphism of associative algebras

ρ : U(g) → gl(V ), x1 · . . . · xn 7→ ρ(x1) · . . . · ρ(xn)
where the associative product of gl(V ) is given by the composition of endomorphisms.
Since ρ : g → gl(V ) is a Lie algebra homomorphism, its extension preserves the rela-
tion I, hence ρ : U(g) → gl(V ) is indeed well-defined. Observe also that g ⊂ U(g).

3. Heisenberg algebra

3.1. Definition of Heisenberg algebra. We are ready to introduce our first infinite-
dimensional Lie algebra, Heisenberg algebra,

Heis := {an,1 | n ∈ Z}
[1, an] = 0

[an, am] = nδn,−m1,

where δm,−n is the Kronecker delta function,

δi,j =

{
1 if i = j

0 otherwise.

Being a central extension of an abelian Lie algebra {an | n ∈ Z} by one-dimensional
Lie algebra {1}, Heis is the simplest infinite-dimensional non-abelian Lie algebra.
Recall that we already considered its finite-dimensional analogue in Example 2.9.

3.2. Bosonic representation of Heisenberg algebra.

3If g is abelian, then U(g) = Sym•(g).
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3.2.1. Definition of B. The importance of Heisenberg algebra arises through its rep-
resentation on the space of polynomial with infinitely many variables, referred to as
Bosonic Fock space. Let

B = C[x1, x2, x3, . . . ] := {xk11 . . . xknn | kj > 0, n ≥ 0},

where x0 is is the constant polynomial 1. Given µ ∈ C, then Heis acts on B via the
following association:

an 7→ ∂

∂xn
if n > 0

an 7→ nxn · if n < 0

a0 7→ µ

1 7→ 1.

More explicitly, an acts by multiplication with nxn for negative n, a0 acts by multipli-
cation with µ, while 1 acts by multiplication with 1. The fact that this indeed defines
a representation of Heis essentially follows from the product rule for differentiation,

∂

∂xn
(nxn · p(x1, . . . , xk))− nxn · ∂

∂xn
p(x1, . . . , xk) = np(x1, . . . , xk).

The necessity of the central extension can also be appreciated through this construc-
tion.

3.2.2. Irreducibility of B.

Lemma 3.1. The representation B of Heis is irreducible.

Proof. The strategy of the proof is exactly the same as in Lemma 2.17. Given any
polynomial in p ∈ B, then by acting with an for positive n, we can reduce P to the
constant polynomial 1. By acting with an for negative n on the constant polynomial
1, we can get any polynomial p′ ∈ B. This shows that any non-zero subrepresentation
of B must B itself. □

The constant polynomial 1 ∈ B plays the same role as xn in Lemma 2.17. We can
also call it a highest-weight vector. However, in the context of the representation B,
it is more often referred to as a vacuum vector. While a−n and an are called creation
and annihilation operators, respectively. This terminology originates from physics,
where B is the space of states of free bosons. The reason for such terminology is
clear: by acting with a−n on 1 we can “create” any polynomial, while by acting with
an we can “annihilate” polynomials.

Let us list the properties that the constant polynomial v := 1 ∈ B has,

an · v = 0 for n > 0

a0 · v = µv

1 · v = v.

(5)

We now characterise the representation B in terms of the vacuum vector v.
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Proposition 3.2. Let V be a representation of Heis with a vector v ∈ V satisfying
(5). Then elements of the form ak1−1 . . . a

kn
−n · v for k ∈ Z>0 are linearly independent.

If these monomials span V , then V is isomorphic to B.

Proof. We have a linear map from B to V , defined as follows:

ϕ : B → V, ϕ(p(x1, . . . , xn)) = p(a−1, . . . ,
a−n

n
) · v,

where p(x1, . . . , xn) is some polynomial in B, and p(a−1, . . . ,
a−n

n ) ∈ U(Heis) (see
the discussion around Definition 2.18). By construction, ϕ is a homomorphism of
representations of B. Moreover, since B is irreducible, and ϕ is not a trivial map, by
Lemma 2.16, we must have that Ker(ϕ) = {0}. This shows that ak1−1 . . . a

kn
−n · v are

linearly independent.
If these elements span V , then ϕ is surjective. We conclude that in this case ϕ

must be an isomorphism. □

3.2.3. Hermitian form on B. We will now equip with B with a Hermitian form. To
do so, observe that there exists a natural anti-linear involution,

ω : Heis
∼−→ Heis, ω(λan) = λa−n, ω(λ1) = λ1,

where λ is a complex number and λ is its conjugate. The involution ω also extends
to the universal enveloping algebra U(Heis).

Definition 3.3. Define the vacuum expectation value ⟨p⟩ of a polynomial p ∈ B as
the constant term of p.

For p, q ∈ B, we then define

⟨p | q⟩ := ⟨ω(p) · q⟩,
where ω(p) ∈ U(Heis) acts on q by annihilation operators. More concretely, if p =

xk11 . . . xknn = ak1−1 . . . a
kn
−n · v, then ω(p) = ak11 . . . aknn . It is an exercise to verify that

⟨ | ⟩ is a (non degenerate) Hermitian form, such that

⟨v | v⟩ = 1, ⟨xk11 . . . xknn | xk11 . . . xknn ⟩ =
n∏

j=1

kj !j
kj ,

and, moreover, non-equal monomials xk11 . . . xknn are orthogonal.
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