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1. INTRODUCTION

1.1. What are they? Let us start by giving a very rough explanation of two terms
that appear in the title of this course. Lie algebras capture a very natural notion - the
one of a symmetry. More precisely, an infinitesimal symmetry. The idea of Integrable
systems, on the other hand, is more intricate to explain. At a first approximation, it
means a differential equation that can be solved exactly.

Lie algebras = Infinitesimal Symmetries

Integrable systems ~ Exactly solvable differential equations

However, such characterisation is neither precise nor does it capture the essence of
Integrable systems. In fact, there is no mathematical definition of Integrable systems
that would encapsulate the full richness of their world. Nevertheless, there are several
symptoms for a differential equation to be an integrable system:

e existence of many symmetries (conserved quantities),

e ability to give explicit solutions,

e presence of algebraic geometric (polynomials).
The properties above are still quite vague and subject to interpretation depending
on the example. So, perhaps, the best way to understand what an Integrable system
is to show one - this is the main objective of the course. In fact, we will be mainly
concerned with one particular Integrable system (and maybe a few others which are
very closely related to it). Namely, the Kadomtsev—Petviashvili (KP) equation:

8<8u 3 Ou 183u> 382u_

e T A “ 1920 u = u(z,y,t) € C®(R?).

ot 2u8$ 4 913

This is a non—linealﬂ partial differential equation with two space variables and one
time variable. In physics, it arises in various ways, but most prominently as a model

IDue to the term %u%.
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for shallow-water waves (i.e., when the wavelength of waves is much greater than the
depth of waters). Its attractiveness from a mathematical point of view stems from
the fact that it perfectly satisfies all expectations one would have for an integrable
system. It is therefore considered the role model for all Integrable systems with
infinitely many degrees of freedom (i.e., its solutions are functions, not points of
some affine space R").

1.2. What this course is about? It is not obvious at all from the first glance, but
the KP equation possesses a lot of symmetries. In fact, so many that it is completely
characterised by them. In the same way that a circle is completely and uniquely
characterized (up to the radius) as the shape that is invariant under rotations.

In particular, by uncovering these symmetries, we will be able to provide various
explicit solutions to it, among which are m-solitons. This is where the theory of
Lie algebras and Integrable systems intersect, as the former is the language for the
symmetry transformations of the latter.

Aim: Understand the KP equation through representation theory.
Our approach will be almost completely algebraic. As a consequence, this course is
about:

Representation theory of Lie algebras,
Combinatorics,

A little bit of algebraic geometry,

A tiny bit of PDE.

And it is not about:

Functional analysis,
e PDE,
e Mathematical physics.

The approach presented in this course comes late in the history of the KP equation.
And arguably it would not be possible without the immense body of work that had
existed prior to that and did not involve any representation theory. Unfortunately,
we will not cover many other aspects of the KP equation and Integrable systems
in general. In particular, tools like Lax pairs, Inverse-scattering method, Spectral
curves, etc., will be either completely ignored or mentioned very briefly.

The representation-theoretic approach to the KP equation was discovered by Sato
[Sat81] and developed by Date-Jimbo-Kashiwara-Miwa [DJKMEI], [DJKMS82]. It will
take us most of the course to set up the right language. We believe that the best
source for this are the lecture notes by Kac [KR87]. However, we will also compliment
them by the book written by Date, Jimbo and Miwa themselves [MJDO00].

1.3. Overview of the course. The course will roughly consist of four parts.

1.3.1. Lie algebras and representation theory. The first part will be about Lie algebras
and their representation theory. After recalling the basic notions of Lie algebra theory,
we will study in more detail three infinite-dimensional Lie algebras:

(1) Heisenberg algebra $eis,

(2) Virasoro algebra Dir,
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(3) Algebra of infinite matrices as.

The lastﬂ is the Lie algebra of symmetry transformations of the KP equation,
doo = {(aij)ijez | aij =0, if i — j| > 0}.

All three algebras are intimately related, and will need to know a few things about
all of them (but less for the Virasoro). The main result of this part will be so-called
Boson-Fermion correspondence, which is a natural isomorphism of two representa-
tions of dy,

(C[zi,:vl,:vg, S =AY

The left-hand side are Bosons - symmetric tensors of a vector space with a countable
basis, also known as polynomials with infinitely many variables. The right-hand
side are Fermions - antisymmetric tensors, also known as the infinite wedge. This
correspondence will allow us to translate something complicated on the Boson side to
something much simpler on the the Fermion side. This “something complicated” on
the Boson side will include the KP equation. To do it, we will need a few combinatorial
tools, which is the subject of the second part.

1.3.2. Combinatorics. In the second part, we will cover some basic combinatorial
tools, like:

e Partitions,

e Schur polynomials,
e Young tableaux,

e Maya diagrams.

They will provide the necessary language to pass between Bosons and Fermions, as
well as the building blocks for understanding the KP equation.

1.3.3. Integrable systems. In the third part, we will analyse the KP equation. Firstly,
we will show that a., is the algebra of symmetry of the KP equation, in the sense
that it acts on the space of its solutions. The KP equation lives on the Boson side,
while its Fermionic counterpart is something more elementary - a quadratic equation
similar to a Plicker relation in finite dimensions.

Using this, we will construct two kinds of explicit solutions:

e Rational solutions,

82
U(ZE, Y, t) = Z@IOg(S)\(CL', Y, t> C4,C5, ... ))a
where Sy is a Schur polynomial associated to a partition A\ written in the
basis of power symmetric polynomials.

e Solitons, e.g.,

1
Y, 1) = .
wzy, 1) 2cosh(3(z +y +t))?

2To be more precise, its central extension.
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Moreover, we will describe the space of its solutions explicitly via a certain Infinite-
dimensional Grassmannian (Sato Grassmannian),

Gr = {solutions of the KP equation}.

We will thereby show that the KP equation possesses all properties mentioned in
Section [l

We will also briefly mention other aspects of the KP equation and how they are
related to the approach presented in the course. Namely, the Lax pairs and the
Inverse-scattering method.

1.3.4. Further applications. Lastly, we will talk about some applications of the the-
ory. A particularly beautiful and quite accessible direction is the Hurwitz theory.
Hurwitz theory counts (ramified) covers of a sphere. The resulting numbers have
deep representaiton-theoretic and algebro-geometric meanings. This will be based on
a very short paper by Okounkov [Oko00].

1.4. Symmetries of equations.

1.4.1. Group symmetries. The best way to end the introduction is to explain what
one means by symmetries of an equation. To this end, one cannot think of anything
more symmetric than a circle (in fact, in some sense, it is a baby version of the KP
equation),

z? 4y =12 (1)
Let GLs be the group of invertible 2 x 2 matrices with real coefficients. We say that
A € GLy is a symmetry of (I, if

for all <$> ceR?, A (x) € 1) if and only if (x) € l’
Yy Yy Yy

It is easy to see that
{A| Ais a symmetry of (1)}

is a subgroup of GLs. Moreover, it is exactly the orthogonal group Os, and its
elements are given by rotations and reflections

~ [cos(f) —sin(0) _ [cos(#
() = <sin(9) cos(f) )’ R(0) = sin(f
1.4.2. Infinitesimal symmetries. Let us define a vector (;E

(o) = (i) ) (3):

X

(G
0)

By differentiating with respect to #, we obtain that

i (o) = (0 0) (6

) solves the following

differential equation:

(2)
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By solving the differential equation , we also recover the rotation matrix 7°(f). In
0 -1
1 0
of T'(#). More precisely, we have the following relation between these matrices,

2 .
0T 0 —1 972 0 -1 ~_ (cos(0) —sin(0)
e’ =hL+0 <1 0 > + o\1 o) T 7 sin(f) cos(f) )
Moreover, the fact that 7'(9) is a symmetry of the circle can be rephrased in terms

of : If the initial condition (ggg;) solves , then the solution of given by

<;§Ez;> solves 1' for all . While this seems just a more complicated way to say the

particular, the matrix 7' = can be viewed as the first-order approximation

same thing, this viewpoint generalises much better than the one from Section [1.4.1
Overall, we can rightfully call the matrix T as a infinitesimal symmetry of .

1.4.3. Structure of infinitesimal symmetries. If
{Symmetries of (1)} = Group,

what structure does

{Infinitesimal symmetries of ()}

possess? Unfortunately, at this stage we exhausted the capacity of to illustrate
the full depth of these notions, as in this case, infinitesimal symmetries are essentially
a vector space spanned by T'. Hence let us consider a more general situation by taking
exponents of an arbitrary matrix. Let

M, Ms € gl,, = {n x n matrices}

be two matrices. Consider their exponents eM1 and 2, which are invertible matrices.
The Baker-Campbell-Hausdorff formula says that the product of e and ™2 can
be expressed as follows,

eMl . €M2 — 6M1+M2+[M17M2]+$[MI_M27[M17M2]]+”'
)

where

[My, Ma] = My - My — My - M.
In particular, if we treat M; and My as the first-order terms of e and e2, then
[M;, Ms] can be interpreted as the first-order version of the matrix multiplication.

The vector space gl,, together with the bracket [ , | is an example of Lie algebra.
Hence the answer to the question above is

{Infinitesimal symmetries} = Lie algebra.
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1.5. Infinitesimal symmetries of equations with infinite degrees of freedom.
In the previous example, the vector (;) lived in a finite-dimensional space R?. We

now want to replace a two-vector by a two-variable function u(z,y). The equation
has a direct generalisation, which is the Laplace equation,

0? 0?
87;; + GT/Z +r2u=0, wu=u(zxy) € CR?).

Rotation matrices also act on functions u(x,y) by precomposition,

1) wie) = (16-0) (7))

one can readily see that this is also a symmetry of the Laplace equation in the same

(0)

sense as before. We define an analogue of the vector (y ( 9)>, namely, the function

of three variables
By differentiating and using the composition rule of differentiation, we obtain an
analogue of ,

0 0 0 0 0
%u(xvyve) - (Iay - y@m) U($7y,9) T x@u(xvyve) - y%U(Cﬂ,y, 0)

We see that the linear operator (xa% — ya%) plays the same role as the matrix

0 -1
1 0
ator T'(f) acting on functions in the same way as before,

. Moreover, by solving the differential equation above we recover the oper-

(73 7v3%) — 1(p).

An important lesson to take away is that differential operators can be viewed as
certain infinitesimal symmetries of functions. It is precisely these kinds of symmetries
that we will explore and that the KP equation possesses.

2. LIE ALGEBRAS

2.1. Definition. We start with recalling what Lie algebras are. In this lecture, we
will be concerned with finite-dimensional Lie algebras. In fact, we will not need
anything from the theory of finite-dimensional Lie algebras apart from a few basic
notions. Throughout the course, we will be working with Lie algebras over the field
of complex numbers C.

Definition 2.1. Let (g,[, ]) be C-linear space with C-bilinear map
[, igxg—g
The pair (g, [, |) is a Lie algebra if

(1) [, ] is skew-symmetric,
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(2) [, ] satisfies the Jacobi identity,
[z, [y, 2] + [y, [z, 2] + [z, [2,9]] =0, forallz,y,z€g.
We call [, | a commutator or Lie bracket. Very often we will drop it from the

notation.

2.2. Examples.

2.2.1. Abelian Lie algebras. The simplest example is an abelian Lie algebra,
V:[, D) [zyl=0foralz,yeV,

where V is some vector space. Despite its apparent simplicity, it is one of the most
important kinds of Lie algebras.

2.2.2. Lie algebras and associative algebras. An associative C-algebra is a C-vector
space with a bilinear product, (A, — - —),

LU AX A A,

which satisfies the associativity axiom,

(- (y-2) = ((z-y)-2).

The vector space A carries a Lie-algebra structure defined as follows,

[z yl=z-y—y-z

The fact that this bracket satisfies the Jacobi identity follows from the associativity
axiom. A more explicit example of this construction is given by the algebra of n x n
matrices,

gl,, = {n x n complex matrices}.

which is the mother of all Lie algebras. More basis-independently, for a vector space
V', the vector space of linear endomorphisms,

gl(V) ={f: vV =V},

is an associative algebra, such that the product is given by composition of maps.
Hence it also carries a Lie bracket by the construction above.

2.2.3. Classical Lie algebras. The following classical Lie algebras are the core of the
theory of finite-dimensional Lie algebras.

(1) sl, = {z € gl, | tr(z) =0},
(2) 0, ={z €gl, | z+ 2T =0}, where 27 is the transpose of a matrix,

(3) spo, ={z €gl, | Jn- 2+ 2" J, =0}, where J, = <19 _6’”>
By exponentiating matrices above, we land into

(1) Special linear group Sl,,

(2) Orthogonal group O,

(3) Symplectic group Sp,,.



8 INFINITE-DIMENSIONAL LIE ALGEBRAS AND INTEGRABLE SYSTEMS

More specifically, slo admits the following explicit presentation:

5[2:{€,h,f}, h:(é _01),€:<8 (1]>af:<(f 8)
[h,e] =2e, [h,f]==2f, le,f]=h.

2.3. Basic notions.

Definition 2.2. Let g be a Lie algebra. A vector subspace h C g is a Lie subalgebra
if
[z,ylg €h, forall z,yehb.
It is an ideal if
[z,ylg€h, forallzegandych.

Example 2.3. All classical Lie algebras are Lie subalgebras of gl,,, so is the abelian
Lie algbera of diagonal matrices.

Definition 2.4. A C-linear map f: g — h is a Lie algebra homomorphism if

f(z,ylg) = [f (@), f(y)ls-

Example 2.5. For any Lie algebra g, there exist a Lie algebra homomorphism,

g%g[(g)a 33‘*—>[1L',—],
where gl(g) is the Lie algebra of linear endomorphisms of the vector space g. The

fact that this map is indeed a Lie algebra homomorphism is equivalent to the Jacobi
identity.

Lemma 2.6. If f: g — b is a Lie algebra homomorphism, then

(1) kef(f) is an ideal,
(2) Im(f) is a Lie subalgebra.

Proof. A simple verification of definitions. d

Definition 2.7. If g, h are Lie algebras, then the direct sum of vector spaces g ® b
carries a natural Lie bracket given by

[(x, y)? (‘75/7 y/)]g@h = ([x, 55/]97 [y, yl]h)‘
We call the resulting Lie algebra a direct sum of Lie algebras.

The notion of direct sums of Lie algebras admits the following generalisation, if
one of the Lie algebras is abelian.

Definition 2.8. Given Lie algebras g,h and a, such that a is abelian. We say that
b is a central extension of g by a if

(1) there exists a sequence of Lie algebra homomorphisms
a ("H. b A g,

such that Ker(m) = Im(¢),
(2) elements of a commute with elements of b, i.e., [a, h]y = 0 (identifying a with

Im(s)).
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Example 2.9. Consider two abelian Lie algebras,
g=A{z,y}, a={z}.
We define a central extension of g by a as follows,
b=A{zy,2}, [z.y]l =21z =2y = 0.

The Lie algebra b is called (small) Heisenberg algebra. It also admits the following
presentation in terms of 3 X 3 matrices,

010 000 00 1
z={00 0], y=[0 0 1], z=[0 0 0
000 000 000

Later, we will define its infinite-dimensional generalisation $jeis by adding infinitely
many pairs of elements z and y with the commutation relation as above.

In the exercise sheet, we show that central extensions are classified by bilinear
skew-symmetric maps

O:gxg—a,
which satisfy the following property:
O(z, [y, 2]) + O(y, [z,2]) + O(z, [z, y]) = 0.

2.4. Representations of Lie algebras.

Definition 2.10. A representation of a Lie algebra is a pair (V, p), a vector space V
and a Lie algebra homomorphism

p:g— gl(V).

Very often we will drop p from the notation. We will also write

x-v:= p(z)(v).

Lie algebras are understood via their representations. Practically, this means that
the study of Lie algebras is very often (if not always) reduced to expressing (or, in
other words, representing) them in terms of some matrices. Moreover, in many situa-
tions, representations rather than Lie algebras themselves are the objects that we care
about. If we view Lie algebras as infinitesimal symmetries, then their representations
are realisations of these symmetries acting on some particular space.

Example 2.11. We have already seen an important representation associated to any
Lie algebra, namely, the adjoint representation

g%g[(g)v ‘TH[xv_]'

Example 2.12. Since all classical Lie algebras from Section [2.2.3] are subalgebras of

a Lie algebra of matrices, they come with a natural representation given by acting
on C™.
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Example 2.13. Consider the Lie algebra sl from the end of Section [2.2.3] Let
V= {azkyn_k |0 <k<n}

be the vector space of homogenous polynomials of total degree n in two variables z
and y. There exists an action of sl on V,, by associating

e|—>x£, f»—)yg, hl—):vﬁ—yg.

oy Ox ox oy
Definition 2.14. Let V} and V5 be representations of a Lie algebra g. A homomor-
phism of representations is a linear map f: Vi — V5, such that
flx-v)y=x-f(v), forallzegandvelV.

We say that two representations are isomorphic (or equivalent) if f is bijective.

Definition 2.15. Let V be a representation of a Lie algebra g. A subpresentation
of V is a vector subspace V' C V, such that

z-veV', forallze€gandveV’,

a subrepresentation of V' is also a representation of g.
We say that a representation V' is irreducible, if it does not have any subrepresen-
tations other than V' itself or {0}.

Lemma 2.16. If f: Vi — V4 is a homomorphism of representations, then Ker(f)
and Im(f) are subrepresentations.

Proof. A simple verification of definitions. O

Let us consider the representations V,, of sly introduced in Example We will
show that they are irreducible. This will involve some ideas that we will extensively
use later.

Lemma 2.17. Representations V,, of sly are irreducible.

Proof. Firstly, by using the definition of these representations, we see that repeated
application of the operators e and f on monomials have the following form:

ek anRyk = gl (3)

|
k. .n n: n—k, k
"t = ———=x 4
Given now a non-zero subrepresentation 0 £ V' C V,,. Consider an arbitrary non-zero
element v of V,
v =" Ry 4

where stands for summands whose powers of y are strictly smaller than k (we
always can pick a summand with the leading power of y). Then by , we get

e v = Akla™,

while by , we obtain that for all 0 < h < n,

|
fh(eFv) = Akl vy

(n—k)!
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Since Vj, is spanned by elements " "y", we obtain that V = V,,. Hence V,, is
irreducible. g

The element z™ € V,, is refereed to as the highest-weight vector. While e and
f are called raising and lowering operators, respectively. This terminology aims to
capture the fact that by acting by e and f we raise and lower the powers of z, and
the element with the highest power of x is ™. Such structure is very often present
in the representation theory of Lie algebras.

Note that in the proof above we also slightly abused the notation writing e* and
f%. Since sly is not an associative algebra, but a Lie algebra, the only legal operations
in sl are addition and commutation [, ]. What we really meant is p(e)* and p(f)¥,
which is permitted because p(e)* and p(f)* are endomorphisms of a vector space (or,
after choosing a basis, matrices). In fact, one can define an object which formally
contains powers of elements of a Lie algbera g, this will allow us to talk about symbols
like e and f* without resorting to specific representations.

Definition 2.18. Given a Lie algebra g. The universal enveloping algebra associated
to g is

Ulg) =P o™ /I, T=@ey—yoz—|zy).
k>0

More explicitly, this is a tensor algebra quotient by the ideal generated by x ® y —
Yy — [z, y]ﬁ It has an associative product given by the tensor multiplication,

(T1®...0x,) (N ...QUR) =1 R ..., QY1 Q... R Y.

In particular, symbols e* and f* from the proof of Lemma can be treated as
elements of U(sly). Moreover, given a representation p: g — gl(V'), by the virtue of
the definition of U(g), there exists a homomorphism of associative algebras

p:U(g) = gl(V), x1-...-zp—=play) ... plzy)

where the associative product of gl(V) is given by the composition of endomorphisms.
Since p: g — gl(V) is a Lie algebra homomorphism, its extension preserves the rela-
tion I, hence p: U(g) — gl(V) is indeed well-defined. Observe also that g C U(g).

3. HEISENBERG ALGEBRA

3.1. Definition of Heisenberg algebra. We are ready to introduce our first infinite-
dimensional Lie algebra, Heisenberg algebra,

$eis := {an, 1 |n € Z}
[1,a,] =0

[an7 am] = nfsn,—m]]-a

31f g is abelian, then U(g) = Sym*®(g).
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where 6,,,—, is the Kronecker delta function,

1 ifi=yj
0ij = ,
0 otherwise.
Being a central extension of an abelian Lie algebra {a,, | n € Z} by one-dimensional

Lie algebra {1}, $eis is the simplest infinite-dimensional non-abelian Lie algebra.
Recall that we already considered its finite-dimensional analogue in Example [2.9]

3.2. Bosonic representation of Heisenberg algebra.

3.2.1. Definition of B. The importance of Heisenberg algebra arises through its rep-
resentation on the space of polynomial with infinitely many variables, referred to as
Bosonic Fock space. Let

B =Clzy,x,...] == {2 ... ak" | k; > 0,n >0},

where z is is the constant polynomial 1. Given p € C, then $eis acts on B via the
following association:

an'_)(‘)in ifn>0

ap — nx, - ifn<0
ag — WY
1+—1.

More explicitly, a,, acts by multiplication with nx,, for negative n, ag acts by multipli-
cation with y, while 1 acts by multiplication with 1. The fact that this indeed defines
a representation of $eis essentially follows from the product rule for differentiation,

al,n (nl‘n 'p(xla s 72716)) — Ny - aimnp(l‘la s 7':616) = np(xla s ,fEk)-

The necessity of the central extension can also be appreciated through this construc-
tion.

3.2.2. Irreducibility of B.
Lemma 3.1. The representation B of $eis is irreducible.

Proof. The strategy of the proof is exactly the same as in Lemma [2.17] Given any
polynomial in p € B, then by acting with a,, for positive n, we can reduce P to the
constant polynomial 1. By acting with a,, for negative n on the constant polynomial
1, we can get any polynomial p’ € B. This shows that any non-zero subrepresentation
of B must B itself. O

The constant polynomial 1 € B plays the same role as 2™ in Lemma We can
also call it a highest-weight vector. However, in the context of the representation B,
it is more often referred to as a vacuum vector. While a_,, and a,, are called creation
and annihilation operators, respectively. This terminology originates from physics,
where B is the space of states of free bosons. The reason for such terminology is
clear: by acting with a_,, on 1 we can “create” any polynomial, while by acting with
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a, we can “annihilate” polynomials.

Let us list the properties that the constant polynomial v := 1 € B has,
an-v=0 forn>0
ag v = pv (5)
1-v=nw.

We now characterise the representation B in terms of the vacuum vector v.

Proposition 3.2. Let V be a representation of $eis with a vector v € V' satisfying
. Then elements of the form a]ill e a’i’;l -v for k € Zsq are linearly independent.

If these monomials span V, then V is isomorphic to B.

Proof. We have a linear map from B to V, defined as follows:

a_p

¢: B—=V, op(xi,...,z,)) =pla_q,..., - ) -,

where p(z1,...,2y,) is some polynomial in B, and p(a—i,...,*") € U(Heis) (see
the discussion around Definition . By construction, ¢ is a homomorphism of
representations of B. Moreover, since B is irreducible, and ¢ is not a trivial map, by
Lemma we must have that Ker(¢) = {0}. This shows that o ...a" - v are
linearly independent.

If these elements span V, then ¢ is surjective. We conclude that in this case ¢

must be an isomorphism. O

3.2.3. Hermitian form on B. We will now equip with B with a Hermitian form. To
do so, observe that there exists a natural anti-linear involution,

w: Heis = Heis, w(ha,) = Aa_p,, w(Al) = M1,

where )\ is a complex number and X is its conjugate. The involution w also extends
to the universal enveloping algebra U ($)eis).

Definition 3.3. Define the vacuum expectation value (p) of a polynomial p € B as
the constant term of p.

For p,q € B, we then define

(p|q) = (wlp) - q),

where w(p) € U($eis) acts on ¢ by annihilation operators. More concretely, if p =
x]fl cooxhn = a’ill ...a" v, then w(p) = a'fl ...afn. Tt is an exercise to verify that

(])is a (non degenerate) Hermitian form, such that
n
k n k n\ s
(wlv)y=1, (zi. . ak |z akny = Hk:j!jkﬂ,
j=1

kn

+» are orthogonal.

and, moreover, non-equal monomials x’fl co.
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4. VIRASORO ALGEBRA

4.1. Witt algebra. Consider a vector field on a circle S?,
d
f(H)@, such that f(#) is smooth, and f(6 + 27) = f(0).

The Lie bracket of two vector fields is

[10)5.90) 5] = (7o~ F'9)(0) (©

All periodic smooth functions admit a Fourier expansion,

f(0) =ap+ Z(an cos(nb) + by, sin(nd)),

n>1

hence the trigonometric functions “span” the vector space of space of periodic func-
tions (and therefore vector fields).

Let now make the situation slightly simpler, consider the vector space of vector
fields, such that:

(1) f(0) is a complex function,
(2) only polynomial expressions in trigonometric functions are allowed, i.e., a,, =
b, = 0 for n > 0.

The resulting vector fields will be spanned by

where z = €. By @, we have
[dn, dim] = (n — m)dnym.

This leads us to the definition of Witt algebra, which can also be viewed as the Lie
algebra of polynomial vector fields on the punctured complex plane C*,

Witt = {d, | n € Z}
[dn, dm] = (0 — m)dpm.

For complex numbers o and [, the Witt algebra admits natural representations

Vag = @vk, dp - v = (—k + a+ Bn)v,ik,
keZ

which can be interpreted as densities vy, = 2*7(dz)”. However,
The Witt algebra is boring.

The reason is that the Witt algebra does not admit interesting representations.
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4.2. Central extension of the Witt algebra: the Virasoro algebra. The more
natural algebra is th central extension of 2Jitt by one-dimensional vector space, called
Virasoro algebra,

it = {d,,C | n € Z}

3 _
[, dim] = (1 — M) dnim + Oy e C (7)

12
[dn, C] = 0.
Proposition 4.1. The bracket defined by @ satisfies Jacobi’s identity.
Proof. By the exercise sheet, it is enough to show that
O(dny, [dnys dng]) + Odny, [dny s dny]) + O(dng, [dny , dny]) (8)
is equal to 0, where © is the bilinear map
O: Vit x Vit — C

’I’LS*TL

12

By expanding the expression and using the commutation relation of the Witt
algebra, we obtain that is equal to

(dn, dm) = 5n,—m

3 3
5n1,—nz—n3T(n2 —ng) + 5n2,—n1—n3T(n3 —n)
3
+ 57137*n1*n3T(n1 - n2)-
Note that ny = —no — ng implies that no = —ny — ng and n3 = —n1 — no, and vice
versa. Hence if ny # —ng — ng, then all delta functions vanish, and there is nothing
to prove. Assume that n;y = —ny — ng, then all delta functions take value 1, and we
therefore have to show that
3 3 3
M Mg —n2. . _ ny—=n3
B (ng —ng) + 12 (ng —ny1) + 12 (n1 — ng)

is equal to 0. This following from a simply calculation by substituting ny = —ng —
ns. O

Note that the presence of 12 in the denominator is mostly conventional. In
fact, H?(Witt,C) = C, hence Wit is the unique central extension of 2Vitt by one-
dimensional vector space (up to scaling).

4.3. Bosonic representation of the Virasoro algebra. Using the action of the
Heisenberg algebra $eis on B = Clxy,x2,...], we will construct an action of the
Virasoro algebra. We start with the definition of operators L acting on B,

1
L = 52 a_jajyi:, k€L,
JEZ
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such that a; are creation and annihilaton operators of $eis acting on B, defined in
Section [3.2.1] and
{aiaj if i < j
L aia5 =

a;a; ifi>7
is the normally ordered product of a; and a;. Note that since a; and a; commute,
unless ¢ = —j, the normal ordering is relevant only for £ = 0. The operator Lg is
referred to as the energy operator. More explicitly, for all k, Ly admits the following
less nationally attractive expression

Ly ak/Q—l— Z a_jajtk, 9)

>77

where € is 0, if k is odd, and 1, if k is even. It is a well-defined operator on B. Indeed,
since a; for positive j acts on B by the differentiation with respect to the variable x;,
0

aj-p = %I)v
J

and every individual p is a polynomial of finitely many variables, it must be that for
Jj > 0, we have a; - p = 0. In particular, for any p € B, all summands of L; for
j > 0 act trivially on p. The normal ordering is necessary for L to be well-defined,
otherwise, is would involve an infinite sum. The beauty of this construction is in
the fact that the operators L define a representation of Uit, i.e., they satisfy the
commutation relations of the Virasoro algebra . We will prove it in two steps.
First comes the following lemma.

Lemma 4.2. We have
[an, L] = naptg, k,n€Z.

Proof. First, By the commutation relations of fjeis from Section the difference
between the normally ordered product : a;a;: and the standard product a;a; is at
most multiplication by a scalar. Multiplication by a scalar commutes all a;, hence
we can write [ay, Lg] ignoring the normal ordering,

1
[an, Lg] = 3 Z[ama—jajJrkL
j
=3 D (ana_jaji, — ajajipan),
=35 Y (ana—jajep — a—janajiy + a—janaj iy, — a_jajsgan),

=35 > (an,ajlajir + ajlana;r)-
J
The commutation with a, is non-zero only when 5 = n, hence we obtain that the
expression above simplifies to

S Nan4k +

9 “Nap+k = NAp+k-

2
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Proposition 4.3. We have
m3 —m
12 7

in particular, operators Ly, define a representation of the Virasoro algebra Ui,

[Ln, Lm] = (m - n)Lm—i—n + 5n,—m

dyp — Ly, Cw1.

Proof. As before, since the difference between the normally ordered product and the
standard product is at most multiplication by a scalar, we can ignore while applying
the bracket [, ]. Using Lemma we obtain

1
(L, Lin] = 5 Z[a*jaﬁrna L]

J
1
= 5 Z(a_jaj+an — Lma_jaj+n)
J
1
=§§:@ﬁhﬁmLM4ﬁmeM%wﬂ
J

1 , .
= 9 Z((] + n)a—jaj+n+m - ]a—j+maj+n)‘
J
Let us now introduce the normal ordering on the summands above. By @D, this
n+m

amounts to swapping the order of factors in a_;a; 1,4 for j < —"5™ at the expense
of applying the commutation relation, i.e.,

A—jGj4n+m = Aj4ntmG—5 — j(sn,—m

similarly, we swap the factors in a_;mma;, for j < ™5 and apply the commutation

relation. We therefore obtain that the above expression is equal to

1 ) . 1 N
5 ((+n)a—jajinym: —Jt a—jim@jin: ) + §6n,,m Z (=) +n)
; <
1 ) .
+ i(sn,—m Z (_])(m _j)'
j<n—2m

By rearranging the summands in the first sum and cancelling terms in two other
sums, we obtain that this is equal to

7'L3—’I’L

1 <
(TL + m)Ln+m — §6n7_m Z j(] + ’)’l) = Ln+m + 5n7_mT’

j=-1

as desired.
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