
A SHORT SUMMARY FOR THE EXAM PREPARATION

(1) Lie algebras: definitions, basic notions, examples. This includes definitions
of a representation, irreducibility of a representation, central extensions, the
universal enveloping algebra.

(2) The definition of the Heisenberg algebra Heis.
(3) The representation of Heis on B = C[x1, x2, . . . ] (also known as Bosonic Fock

space); the proof of irreducibility of B.
(3.1) The representation B is determined by the vacuum vector, Proposi-

tion 3.2 in the lecture notes.
(3.2) The Hermitian pairing on B.

(4) The definition of Witt and Virasoro algebras, Wiit and Vir.
(5) The representation of Vir on B via operators Lk.
(6) The problem of irreducibility of B as a representation of Vir from Exercise

sheet 3.
(7) Grading on B in terms of k1 + 2k2 + . . . nkn, page 18 of the lecture notes.
(8) Lie algebras of infinite matrices gl∞ and a∞; examples of infinite matrices,

e.g., elementary matrices Eij , shift operators Λk and their commutation rela-
tions.

(9) Infinite wedge ∧∞V (also known as Fermionic Fock space) and its subspaces
F (m) , where V = ⊕i∈ZCvi; the Hermitian pairing on ∧∞V .

(10) Semi-infinite monomials, and the combinatorial properties of the associated
index sets S = {s0, s−1, s−2, . . . }, e.g., Lemma 5.2 in the lecture notes.

(11) Passing from partitions to sets S and vice versa, Lemma 5.3 in the lecture
notes.

(12) The degree grading on F (m).
(13) Maya diagrams associated to semi-infinite monomials (and Young tableaux).
(14) The action of gl∞ on ∧∞V ; the action is well-defined. The explicit action of

elementary matrices Eij .
(15) The action of a∞ on ∧∞V is not well-defined due to infinities.
(16) The central extension of a∞, denoted by a∞. The new action of matrices on

∧∞V is well-defined (i.e., the infinities are removed), respects the Lie bracket
of the central extension a∞.

(17) Heisenberg algebra Heis sits inside a∞ via Shift operators Λk, Lemma 6.3,
and therefore acts on ∧∞V .

(18) Boson-Fermion correspondence, Part 1. Vector spaces B and F (0) are natu-
rally isomorphic are representations of Heis; this follows from Proposition 3.2
and the dimension counts of the graded pieces Bk and F

(0)
k (both are equal

to the number of partitions of k). The vacuum vector 1 ∈ B is sent to the
vacuum vector ψ0 ∈ F (0).
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(19) Boson-Fermion correspondence, Part 2. Using the Boson-Fermion isomor-
phism, induce the action of gl∞ on B. Determine which polynomials in B
correspond to semi-infinite monomials in F (0), and how elementary matrices
Eij act on B. This is done in several steps.
(19.1) Wedging and contraction operators v̂i and v̌∗

i acting on ∧∞V ; their
interpretation in terms of Maya diagrams: they create or remove black
dots.

(19.2) Expressions of elementary matrices Eij in terms of wedging and con-
traction operators; derivation of the generating series of wedging and
contraction operators through the commutation relations, Theorem
8.1.

(19.3) Derivation of generating series of elementary matrices Eij through
Theorem 8.1, Corollary 8.2.

(19.4) Definition of Schur polynomials; semi-infinite monomials are sent to
Schur polynomials with respect to the Boson-Fermion isomorphism.
The end of the Boson-Fermion correspondence.

(20) Integrable systems: the Kadomtsev–Petviashvili equation as the equation of
waves in shallow waters. Integrable systems = solvable systems of differential
equations with many symmetries.

(21) The Kadomtsev–Petviashvili hierarchy as the Bosonic equation of the orbit.
This is done in several steps.
(21.1) The group GL∞ as exponentials of matrices in gl∞. The action of

the group of GL∞ on ∧∞V .
(21.2) The equation of the orbit Ω = GL∞ · ψ0 ⊂ F (0) in terms of wedging

and contraction operators, Theorem 9.2.
(21.3) The infinite-dimensional analogue of the Plücker relations, which are

equations of the orbit of GLn·ψ0 ⊂ ∧kV for a finite-dimensional vector
space V . The orbit Ω is an infinite-dimensional Grassmannian.

(21.4) Translating the Fermionic equation of the orbit Ω using the Boson-
Fermion correspondence.

(21.5) Organizing the Bosonic equation of the orbit Ω using the Hirota bilin-
ear notation, Theorem 10.5; this results in the system of differential
equations, called Kadomtsev–Petviashvili hierarchy. A polynomial
solves this system, if and only if it is in the orbit Ω ⊂ B.

(22) The first non-trivial equation of the Kadomtsev–Petviashvili hierarchy is the
Kadomtsev–Petviashvili equation, Lemma 11.1.

(23) The difference between τ functions of the Kadomtsev–Petviashvili equation
and the associated solutions.

(24) Conclude that, by construction, GL∞ is the group of symmetries of the
Kadomtsev–Petviashvili hierarchy: if τ is a solution, then A · τ for A ∈ GL∞
is also a solution.

(25) The Kadomtsev–Petviashvili hierarchy is an Integrable system: it possesses
an infinite-dimensional group of symmetries; its solutions are given by acting
with GL∞ on 1 ∈ B.
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(26) This leads to the construction of two families of explicit solutions: Schur
solutions and n-solitons. Schur solutions are given by Schur polynomials
(after taking log and differentiating twice), they are contained in the orbit by
the Boson-Fermion correspondence.

(27) On the other hand, n-solitons are given by acting on 1 with the (u, v)-
dependent generating series of elementary matrices, Corollary 12.2, which
were derived in the proof of the Boson-Fermion correspondence.

(28) Interpretation of n-solitons are solitary waves packets.


