A SHORT SUMMARY FOR THE EXAM PREPARATION

- (1) Lie algebras: definitions, basic notions, examples. This includes definitions of a representation, irreducibility of a representation, central extensions, the universal enveloping algebra.
- (2) The definition of the Heisenberg algebra \mathfrak{Heis} .
- (3) The representation of $\mathfrak{H}eis$ on $B = \mathbb{C}[x_1, x_2, \dots]$ (also known as Bosonic Fock space); the proof of irreducibility of B.
 - (3.1) The representation B is determined by the vacuum vector, Proposition 3.2 in the lecture notes.
 - (3.2) The Hermitian pairing on B.
- (4) The definition of Witt and Virasoro algebras, \mathfrak{Wiit} and \mathfrak{Vir} .
- (5) The representation of \mathfrak{Vir} on B via operators L_k .
- (6) The problem of irreducibility of B as a representation of \mathfrak{Vir} from Exercise sheet 3.
- (7) Grading on B in terms of $k_1 + 2k_2 + ... nk_n$, page 18 of the lecture notes.
- (8) Lie algebras of infinite matrices \mathfrak{gl}_{∞} and $\overline{\mathfrak{a}}_{\infty}$; examples of infinite matrices, e.g., elementary matrices E_{ij} , shift operators Λ_k and their commutation relations.
- (9) Infinite wedge $\wedge^{\infty} V$ (also known as Fermionic Fock space) and its subspaces $F^{(m)}$, where $V = \bigoplus_{i \in \mathbb{Z}} \mathbb{C}v_i$; the Hermitian pairing on $\wedge^{\infty} V$.
- (10) Semi-infinite monomials, and the combinatorial properties of the associated index sets $S = \{s_0, s_{-1}, s_{-2}, \dots\}$, e.g., Lemma 5.2 in the lecture notes.
- (11) Passing from partitions to sets S and vice versa, Lemma 5.3 in the lecture notes.
- (12) The degree grading on $F^{(m)}$.
- (13) Maya diagrams associated to semi-infinite monomials (and Young tableaux).
- (14) The action of \mathfrak{gl}_{∞} on $\wedge^{\infty}V$; the action is well-defined. The explicit action of elementary matrices E_{ij} .
- (15) The action of $\bar{\mathfrak{a}}_{\infty}$ on $\wedge^{\infty} V$ is not well-defined due to infinities.
- (16) The central extension of $\bar{\mathfrak{a}}_{\infty}$, denoted by \mathfrak{a}_{∞} . The new action of matrices on $\wedge^{\infty}V$ is well-defined (i.e., the infinities are removed), respects the Lie bracket of the central extension \mathfrak{a}_{∞} .
- (17) Heisenberg algebra \mathfrak{Heis} sits inside \mathfrak{a}_{∞} via Shift operators Λ_k , Lemma 6.3, and therefore acts on $\wedge^{\infty} V$.
- (18) Boson-Fermion correspondence, Part 1. Vector spaces B and $F^{(0)}$ are naturally isomorphic are representations of \mathfrak{Heis} ; this follows from Proposition 3.2 and the dimension counts of the graded pieces B_k and $F_k^{(0)}$ (both are equal to the number of partitions of k). The vacuum vector $1 \in B$ is sent to the vacuum vector $\psi_0 \in F^{(0)}$.

- (19) Boson-Fermion correspondence, Part 2. Using the Boson-Fermion isomorphism, induce the action of \mathfrak{gl}_{∞} on *B*. Determine which polynomials in *B* correspond to semi-infinite monomials in $F^{(0)}$, and how elementary matrices E_{ij} act on *B*. This is done in several steps.
 - (19.1) Wedging and contraction operators \hat{v}_i and \check{v}_i^* acting on $\wedge^{\infty}V$; their interpretation in terms of Maya diagrams: they create or remove black dots.
 - (19.2) Expressions of elementary matrices E_{ij} in terms of wedging and contraction operators; derivation of the generating series of wedging and contraction operators through the commutation relations, Theorem 8.1.
 - (19.3) Derivation of generating series of elementary matrices E_{ij} through Theorem 8.1, Corollary 8.2.
 - (19.4) Definition of Schur polynomials; semi-infinite monomials are sent to Schur polynomials with respect to the Boson-Fermion isomorphism. The end of the Boson-Fermion correspondence.
- (20) Integrable systems: the Kadomtsev–Petviashvili equation as the equation of waves in shallow waters. Integrable systems = solvable systems of differential equations with many symmetries.
- (21) The Kadomtsev–Petviashvili hierarchy as the Bosonic equation of the orbit. This is done in several steps.
 - (21.1) The group $\operatorname{GL}_{\infty}$ as exponentials of matrices in \mathfrak{gl}_{∞} . The action of the group of $\operatorname{GL}_{\infty}$ on $\wedge^{\infty} V$.
 - (21.2) The equation of the orbit $\Omega = \operatorname{GL}_{\infty} \cdot \psi_0 \subset F^{(0)}$ in terms of wedging and contraction operators, Theorem 9.2.
 - (21.3) The infinite-dimensional analogue of the Plücker relations, which are equations of the orbit of $\operatorname{GL}_n \cdot \psi_0 \subset \wedge^k V$ for a finite-dimensional vector space V. The orbit Ω is an infinite-dimensional Grassmannian.
 - (21.4) Translating the Fermionic equation of the orbit Ω using the Boson-Fermion correspondence.
 - (21.5) Organizing the Bosonic equation of the orbit Ω using the Hirota bilinear notation, Theorem 10.5; this results in the system of differential equations, called Kadomtsev–Petviashvili hierarchy. A polynomial solves this system, if and only if it is in the orbit $\Omega \subset B$.
- (22) The first non-trivial equation of the Kadomtsev–Petviashvili hierarchy is the Kadomtsev–Petviashvili equation, Lemma 11.1.
- (23) The difference between τ functions of the Kadomtsev–Petviashvili equation and the associated solutions.
- (24) Conclude that, by construction, $\operatorname{GL}_{\infty}$ is the group of symmetries of the Kadomtsev–Petviashvili hierarchy: if τ is a solution, then $A \cdot \tau$ for $A \in \operatorname{GL}_{\infty}$ is also a solution.
- (25) The Kadomtsev–Petviashvili hierarchy is an Integrable system: it possesses an infinite-dimensional group of symmetries; its solutions are given by acting with GL_{∞} on $1 \in B$.

- (26) This leads to the construction of two families of explicit solutions: Schur solutions and n-solitons. Schur solutions are given by Schur polynomials (after taking log and differentiating twice), they are contained in the orbit by the Boson-Fermion correspondence.
- (27) On the other hand, *n*-solitons are given by acting on 1 with the (u, v)-dependent generating series of elementary matrices, Corollary 12.2, which were derived in the proof of the Boson-Fermion correspondence.
- (28) Interpretation of *n*-solitons are solitary waves packets.