
401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 1 – Introduction to Markov semigroups
Lecturer: Yuansi Chen Week 1-2 Spring 2025

High level motivation of this course. Analytic, probabilistic and geometric as-
pects of Markov semigroup, and their interplay. More discussed in class.

Key concepts:

• Markov processes

• Markov semigroup

• Poincaré inequality and Log-Sobolev inequality

• Objects in Markov semigroups

– Kernels, Chapman-Kolmogorov equations, Infinitesimal generator, carré du
champ operator, Fokker-Planck equation, etc.

• Example: heat semigroup on Euclidean space

1.1 Introduction

We start with some probability space (Ω,Σ,P), where

• Ω is sample space, which is the set of all possible outcomes

• Σ is event space, which is the set of events, where each event is a subset of
outcomes in the sample space

• P is a probability function, which assigns, to each event in Σ, a probability, which
is a number between 0 and 1.

A random variable is a measurable function X : Ω → E from the sample space Ω to a
measurable space (E,F).

Example 1. Take the standard Euclidean space Rn equipped with its Borel σ-field.

A process (Xt)t≥0 is a family of random variables constructed on (Ω,Σ,P), with
values in E. Let Ft := σ(Xu : u ≤ t), t ≥ 0, be the natural filtration of (Xt)t≥0.
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Markov property The Markov property indicates that for t > s, the law of Xt given
Fs is the law of Xt given Xs. That is,

P(Xt ∈ A | Fs) = P(Xt ∈ A | Xs).

We also assume the Markov process is time homogeneous (which is the only case we
consider), that is, the law of Xt given Xs is the law of Xt−s given X0.

Markov process The process (Xt)t≥0 satisfying the Markov property is said to be a
Markov process.

Markov semigroup associated with a Markov process Given a Markov process
(Xt)t≥0, we associate a semigroup to the process as follows

Ptf(x) = E [f(Xt) | X0 = x] , t ≥ 0

for every bounded and measurable function f : E → R, for every x ∈ E.

Key properties of Markov semigroup

(i) For every t ≥ 0, Pt is a linear operator sending bounded measurable functions on
(E,F) to bounded measurable functions.

(ii) P0 = Id, (initial condition)

(iii) Pt1 = 1, (mass conservation)

(iv) If f ≥ 0, then Ptf ≥ 0, (positivity preserving)

(v) For every t, s ≥ 0, Pt+s = Pt ◦ Ps, (semigroup property)

Proof. as exercise

Invariant measure (or stationary measure) A measure µ on (E,F) is said to be
invariant for P (or stationary) if∫

E

Ptfdµ =

∫
E

fdµ,∀t ≥ 0,

for every bounded and measurable f .
The semigroup (Pt) can be seen as acting on measures as well through the following

duality ∫
E

fd(µPt) =

∫
E

Ptfdµ.
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If µ is a probability measure, then µPt is the law of Xt when µ is the law of X0.
The last condition required to deal with a Markov semigroup is the following con-

tinuity property

(vi) For every f ∈ L2(µ), Ptf converges to f in L2(µ) as t → 0 (continuity property).

General construction of Markov semigroups (without relying on X) (Def
1.2.2) A family of operators (Pt)t≥0 defined on the bounded measurable functions on a
state space (E,F) with invariant σ-finite measure µ satisfying the properties (i)-(vi) is
called a Markov semigroup of operators.

1.2 Quick introduction of log-Sobolev inequalities

Variance If f is a square integral function with respect to µ, its variance is

Varµ(f) =

∫
f 2dµ−

(∫
fdµ

)2

= VarX∼µ(f(X))

Entropy If f is a nonnegative function, integrable with respect to µ, then its entropy
is

Entµ(f) =

∫
f log fdµ−

(∫
fdµ

)
log

(∫
fdµ

)
.

Poincaré inequality We say µ satisfies the Poincaré inequality with constant C if

Varµ(f) ≤ C

∫
|∇f |2 dµ,

for every function f whose gradient belongs to L2(µ).

Log-Sobolev inequality We say µ satisfies the logarithmic-Sobolev inequality with
constant C if

Entµ(f
2) ≤ 2C

∫
|∇f |2 dµ.

for every function f whose gradient belongs to L2(µ).
We just introduce them for the purpose explaining the title of the course. We will

discuss them in more details later.
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1.3 Objects of interest in Markov semigroups

• Kernels

• Chapman-Kolmogorov equations

• Infinitesimal generator

• carré du champ operator

• Fokker-Planck equation

Kernel representation (Prop 1.2.3) Given a good measure space (E,F , µ), if P1 =
1, and P is bounded on L1(µ), P can be represented as a probability kernel p(x,A),

Pf(x) =

∫
E

f(y)p(x, dy)

for every bounded or positive measurable function f on E and (µ-almost) every x ∈ E.
We know how to define Pt starting from Xt (we call it Markov semigroup associated

with a Markov process). How to construct a Markov process from Pt defined using
(i)-(vi)?

Chapman-Kolmogorov equation Let (Pt)t≥0 on L2(µ). The semigroup property
Pt ◦ Ps = Pt+s translates to the kernels pt(x, dy) via the composition property, for all
t, s ≥ 0, x ∈ E,

pt+s(x, dy) =

∫
z∈E

pt(z, dy)ps(x, dz).

Using the above equation, one may construct, starting from any point x ∈ E, a Markov
process (Xt)t≥0 on E by specifying the distribution of (Xt1 , . . . , Xtk), 0 ≤ t1 ≤ · · · ≤ tk,
as

E [f(Xt1 , . . . , Xtk)] =

∫
f(y1, . . . , yk)ptk−tk−1

(yk−1, dyk) · · · pt1(x, dy1).

Given a Markov semigroup (Pt)t≥0 with its kernel pt(·, ·), we therefore have candidates
(by specifying its law on a finite-dimensional space) of a Markov processes starting
from a point x ∈ E. However, in general, the finite dimensional description is not
enough to characterize the full law of the Markov process. It needs some extra work
such as assuming regular paths of Xt, but we don’t deal with it in this course. See e.g.
Kolmogorov extension theorem for more details.

YC — Lecture 01 stopped at Chapman-Kolmogorov equation, after de-
riving it for heat semigroup
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It is pretty clear that from the semigroup property, that (Pt) is completely deter-
mined by its behavior when t tends to 0. It is natural to consider differentiating Ptf at
t = 0.

Infinitesimal generator The infinitesimal generator L associated with a Markov
semigroup (Pt)t≥0 is the operator defined by

Lf := lim
t→0+

Ptf − f

t
,

for all functions f for which the above limit exists.

Remark 1. Due to technical difficulties which is hard to resolve in a short time, we
don’t specify the set of functions for which the limit exists. The domain of L is usually
worth thinking twice when working with Markov semigroups. In general, according to
the Hille-Yosida theory for Markov semigroups on Banach space B, there exists a dense
linear subspace of B, on which the derivative at t = 0 exists in B. See [BGL13] Chap
1.4.1 and Appendix A.1.

Carré du champ operator Carré du champ operator is the bilinear map

Γ(f, g) =
1

2
[L(fg)− fLg − gLf ] ,

defined for f and g on a vector subspace A (also an algebra) of the domain of L. To
lighten the notation, we set Γ(f) = Γ(f, f).

Remark 2. One may ask why it is called carré du champ? In French, carré = square,
champ = field. In the simple example of L = ∆ the Laplacian on Rn, we have

Γ(f, g) = ∇f · ∇g.

So Γ(f, f) = |∇f |2.

Proposition 1.3.1. The carré du champ operator is positive on A in the sense that

Γ(f) ≥ 0, f ∈ A.

Proof. We have

Pt(f
2)(x) = E

[
f(Xt)

2 | X0 = x
]
≥ E [f(Xt) | X0 = x]2 = (Pt(f)(x))

2

where the inequality follows from Cauchy-Schwarz inequality (or Jensen’s inequality).
Taking the limit t → 0, we have

L(f 2) ≥ 2fLf.
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Proposition 1.3.2. If L is a second-order differential operator of the form

Lf(x) =
∑
ij

aij(x)∂ijf(x) +
∑
i

bi(x)∂if(x)

then the carré du champ operator recovers a weighted squared gradient

Γ(f)(x) =
∑
ij

aij(x)∂if(x)∂jf(x)

Proof. exercise

Fokker-Planck equations provide a dual point of view on the Chapman-Kolmogorov
equation.

Fokker-Planck equations Given a Markov semigroup (Pt)t≥0 with kernel pt(x, y)dy
and generator L. The function pt(x, y), t > 0, x ∈ E is a solution to the following partial
differential equation

∂tpt(x, y) = Lxpt(x, y), p0(x, y)dy = δx (1.1)

where Lx denotes the operator L acting on the x variable. This also expresses that

∂tPtf = LPtf. (1.2)

The dual equation is called the Fokker-Planck equation or Kolmogorov forward equation,
for t > 0,

∂tpt(x, y) = L∗
ypt(x, y), p0(x, y)dy = δx (1.3)

where L∗ is the adjoint of L with respect to the reference measure dy in the sense that∫
E

fL∗gdy =

∫
E

gLfdy,

for suitable functions f, g. Eq. (1.1) describes how the probability density function
evolves over time (forward in time). In contrast, the Kolmogorov backward equation
Eq. (1.2) describes the evolution of expected functionals of the process.

1.3.1 Other properties of a Markov semigroup

Reversibility (or symmetry). A Markov semigroup (Pt) is said to be symmetric
with respect to the invariant measure µ, or µ is reversible for (Pt), if for all functions
f, g ∈ L2(µ) and t ≥ 0, ∫

E

fPtgdµ =

∫
E

gPtfdµ.
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If in addition, Pt admits a kernel pt(x, y) with respect to µ, then pt is a symmetric
function on E × E. Additionally, its infinitesimal generator L is a symmetric operator
on L2(µ), that is,

∫
E
fLgdµ =

∫
E
gLfdµ.

Proposition 1.3.3. If µ is reversible for (Pt), then µ is invariant measure for (Pt).

Proof. Take g to be 1, the all one function.

Contractivity If µ is stationary, then Pt extends to a continuous operator on Lp(µ)
for any q ∈ [0,∞]. Moreover, Pt is a contraction:

∥Ptf∥q ≤ ∥f∥q ,∀q ∈ [1,∞],∀f ∈ Lq(µ).

Proof. Let f be bounded and in Lq(µ). By Jensen’s inequality we have |Ptf(x)|q ≤
Pt(|f |q)(x), pointwise. Integrating and using stationarity, we get∫

E

|Ptf |q dµ ≤
∫
E

Pt(|f |q)dµ =

∫
E

|f |q dµ.

Since bounded functions are dense in Lq(µ), we conclude.

For the following properties, see [BGL13] Chap 1, we cover them when needed.

• Abstract martingale problem

• Dirichlet form and spectral decomposition.

• Ergodicity

• Convergence to equilibrum

1.4 First example: heat semigroup

Gaussian measure on Rn

γn(A) =
1

(2π)
n
2

∫
A

exp

(
−|x|2

2

)
dx

Its density with respect to Lebesgue measure is 1

(2π)
n
2
exp

(
− |x|2

2

)
.
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Brownian motion Brownian motion is a process (Bt)t≥0 in Rn such that B0 = 0 and
satisfying

1. (independent increments) For all 0 < t1 < · · · < tk, the random variables
(Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

) are mutually independent.

2. (law of the increments) For all 0 ≤ s < t < ∞,

Bt −Bs ∼ N (0, (t− s)In)

3. (continuity of the paths) Almost surely, t 7→ Bt is continuous.

In this section, we focus on the process

B̃t := B2t, t ≥ 0.

Derive its associated Markov semigroup

Ptf(x) = E
[
f(B̃t) | B̃0 = x

]
(i)
= EG∼N (0,In)

[
f(x+

√
2tG)

]
=

∫
f(x+

√
2tz)

1

(2π)n/2
exp

(
−|z|2

2

)
dz

(i) use the Gaussian law of the increments.

Find an invariant measure dµ = dx the Lebesgue measure is invariant. Note that
it is not a bounded measure on Rn.

Derive its kernel Using change of variable formula for y = x+
√
2tz, we have

Ptf(x) =

∫
f(x+

√
2tz)

1

(2π)n/2
exp

(
−|z|2

2

)
dz

=

∫
f(y)

1

(4πt)n/2
exp

(
−|y − x|2

4t

)
dy (1.4)

We can identify the kernel

pt(x, dy) =
1

(4πt)n/2
exp

(
−|y − x|2

4t

)
dy
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Derive its Chapman-Kolmogorov equation It appears as a consequence of the
fact that the sum of two independent Gaussian vectors in Rn with respective covariance
matrices 2tIn and 2sIn is a Gaussian vector with covariance 2(t+ s)In.

Derive its infinitesimal generator We would like to calculate

Lf := lim
t→0+

Ptf − f

t
,

so take derivative of Pt with respect to t at the neighborhood of 0. For semigroups
on Rn, the trick is to observe in Eq. (1.4) that we can move t into f and then take
derivative. For t > 0,

d

dt
Ptf =

∫ 〈√
2

2
t−

1
2 z,∇f(x+

√
2tz)

〉
1

(2π)n/2
exp

(
−|z|2

2

)
dz

(i)
= 0 +

n∑
i=1

∫
∂2
i f(x+

√
2tz)

1

(2π)n/2
exp

(
−|z|2

2

)
dz

(i) applies integration by parts on each coordinate (u′ = zi
1

(2π)n/2 exp
(
− |z|2

2

)
), the

boundary terms are zero, because of the Gaussian tail and conditions on f . For example,
we could consider the infinitesimal generator on the class of smooth (C∞) compacted
supported functions.

Finally, take the limit t → 0+, we obtain

Lf = ∆f

where ∆f =
∑n

i=1 ∂
2
i f is the Laplacian on Rn defined on smooth functions.

Derive its carré du champ

Γ(f, g) =
1

2
[L(fg)− fLg − gLf ]

=
1

2
[∆(fg)− f∆g − g∆f ]

=
n∑

i=1

(∂if)(∂ig)

= ∇f · ∇g.

Note that

∂i(fg) = (∂if)g + (∂ig)f

∂2
i (fg) = (∂2

i f)g + (∂if)(∂ig) + (∂2
i g)f + (∂if)(∂ig).
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Derive its Fokker-Planck equation Since µ is also reversible to Pt, then

L∗ = L = ∆.

The Fokker-Planck equation becomes

∂tpt = ∆pt, p0(y)dy = δx.

This is exactly the heat equation, which admits a solution in the form

y 7→ pt(x, y) =
1

(4πt)n/2
exp

(
−|y − x|2

4t

)
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1.5 Exercises

Exercise 1 (Generator of Langevin semigroup). Consider the solution to the following
Langevin stochastic differential equation

dXt = −∇U(Xt)dt+
√
2dBt.

Derive its associated Markov semigroup and its infinitesimal generator L. First, without
justification on regularity conditions. Second, think about the domain of L

Exercise 2. Prove Proposition 1.3.2.

Exercise 3 (Uniqueness of Kolmogorov forward equation solution). Let (Pt)t≥0 be a
Markov semigroup, with µ is its stationary measure and L is its infinitesimal generator.
Suppose ut = Ptf solves Kolmogorov forward equation

∂tut = Lut, u0 = f.

Prove that if a solution ut exists and satisfies the semigroup property, then it is unique.

Exercise 4 (Heat semigroup). Let (Pt)t≥0 be the heat semigroup on Rn.

1. Prove that if f is bounded on Rn, then

sup
x

Ptf(x) ≤ sup
x

f(x).

2. Suppose f > 0. Prove that for any t > 0, x, y ∈ Rn

Ptf(x) ≤ Ptf(y) exp

(
|x− y|2

4t

)
.

Exercise 5. Let (Pt)t≥0 be a Markov semigroup. Prove that for any differentiable
function f with bounded gradient on Rn:

|∇Ptf | ≤ Pt |∇f | .
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