
401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 2 – OU semigroup and Gaussian LSI
Lecturer: Yuansi Chen Week 3-4 Spring 2025

Key concepts:

• Ornstein-Uhlenbeck (OU) semigroup

• Poincaré inequality

• Logarithmic Sobolev inequality

• Implication I: convergence to equilibrum

• Implication II: concentration of Lipschitz functions

• Alternative proof via local Poincaré inequality

• Alternative proof via tensorization and Central Limit Theorem.

2.1 Ornstein-Uhlenbeck (OU) semigroup

Let (Ω,Σ,P) be a probability space equipped with a filtration Ft carrying a standard n-
dimensional Brownian motion (Bt)t≥0. We consider the following stochastic differential
equation (SDE)

dXt = −Xtdt+
√
2dBt. (2.1)

We could follow the standard existence and uniqueness theorems (see e.g. Chap 3
of [Oks13]) on the solution of the above SDE. But actually, it can be solved explicitly.
We have

d(etXt) = etdXt + etXtdt =
√
2etdBt.

Then

Xt = e−tX0 +
√
2

∫ t

0

es−tdBs,

is a solution to Eq. (2.1). It is not hard to see that (Xt)t≥0 defined above is a Markov
process. And if X0 = x, then X ∼ N (

√
ρx, (1− ρ)In) where ρ = e−2t.

In the following, we derive the following objects of interest for this Markov process.
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1. Associated Markov semigroup

2. Invariant measure, reversibility

3. Kernel

4. Infinitesimal generator

5. Carré du champ operator

6. Fokker-Planck equation

Derive its associated Markov semigroup We have

Ptf(x) = E [f(Xt) | X0 = x]

(i)
= EG∼N (0,In)

[
f
(
e−tx+

√
1− e−2tG

)]
=

∫
Rn

f
(
e−tx+

√
1− e−2ty

)
γn(dy).

For (i), note that
√
2
∫ t

0
es−tdBs is a Gaussian vector centered at 0 and having covariance

matrix (via Itô’s isometry)

2

∫ t

0

e2(s−t)dsIn = (1− e2t)In.

Here γn is the density of standard Gaussian N (0, In).

Proposition 2.1.1 (Merhler formula). For any test function f (such that the integrals
are well-defined) and every x ∈ Rn,

Ptf(x) =

∫
Rn

f(
√
ρx+

√
1− ρy)γn(dy)

= f ∗ g1−ρ(
√
ρx),

where ∗ denotes convolution, ρ = e−2t, g1−ρ is the density of N (0, (1− ρ)In).

From the Merhler formula, we deduce the semigroup property Ps+t = Ps◦Pt because
the convolution of two Gaussian with mean 0 and covariance Σ1 and Σ2 results in a
Gaussian with mean 0 and covariance Σ1 + Σ2.

Ps(Ptf)(x) = Ps(f(
√
ρt·) ∗ g1−ρt(

1
√
ρt
·))(x)

= f(
√
ρt·) ∗ g1−ρt(

1
√
ρt
) ∗ g1−ρs(

√
ρsx)

= f(
√
ρt·) ∗ g1/ρt−ρs(·)(

√
ρsx)

= f ∗ g1−ρtρs(·)(
√
ρtρsx).
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Derive its invariant measure

Proposition 2.1.2. The standard Gaussian measure γn is reversible for (Pt).

Proof. We have∫
f(Pth)dγn =

∫ ∫
f(x)h(

√
ρx+

√
1− ρy)γn(dy)γn(dx)

(i)
=

∫ ∫
f(x)h(

√
ρx−

√
1− ρy)γn(dy)γn(dx)

(ii)
=

∫ ∫
f(
√
ρw +

√
1− ρz)h(w)γn(dw)γn(dz)

=

∫
h(Ptf)dγn.

(i) follows from the symmetry of Gaussian around 0, (ii) uses change of variance

[
x
y

]
=[ √

ρw +
√
1− ρz

−
√
1− ρw +

√
ρz

]
, with Jacobian 1.

Hence, γn is also an invariant measure for (Pt).

Derive its kernel Since

Ptf(x) =

∫
Rn

f(
√
ρx+

√
1− ρy)γn(dy)

=

∫
Rn

f(z)
1

(2π(1− ρ))
n
2

e−
|z−√

ρx|2
2(1−ρ) dz,

we identify the kernel (with respect to γn)

pt(x, y)dγn(y) =
1

(1− ρ)
n
2

e−
|y−√

ρx|2
2(1−ρ)

+
|y|2
2 dγn(y).

Derive its infinitesimal generator Since

Ptf(x) =

∫
Rn

f(e−tx+
√
1− e−2ty)γn(dy)

Taking derivative with respect to t around 0 gives

d

dt
Ptf(x) =

∫
Rn

〈
−e−tx+ e−2t(1− e−2t)−

1
2y,∇f(e−tx+

√
1− e−2ty)

〉
γn(dy).
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It gives two terms. The first term gives −x · ∇f(x) when t → 0, and the second term
gives ∆f(x) via integration by parts. Finally, the generator

L = ∆− x · ∇,

defined for functions in C2
b . Consequently, the associated Fokker-Planck equation is

∂tpt = ∆pt − x · ∇pt.

Derive carré du champ operator We have

Γ(f) =
1

2

[
L(f 2)− 2fLf

]
= |∇f |2 .

Integration by parts formula for OU semigroup For f and g in C2
b , we have the

following integration by parts formula∫
Rn

(Lf)gdγn = −
∫
Rn

⟨∇f,∇g⟩ dγn (2.2)

Proof. Since (Pt) has reversible measure γn, we have∫
Rn

(Ptf)gdγn =

∫
Rn

f(Ptg)dγn.

For f, g ∈ C2
b we can apply dominated convergence and differentiate at t = 0, and

obtain ∫
Rn

(Lf)gdγn =

∫
Rn

f(Lg)dγn.

Similarly, since (Pt) has reversible measure γn, we have∫
Rn

Pt(fg)dγn =

∫
Rn

fgdγn.

Differentiating gives ∫
Rn

L(fg)γn = 0.

And easy computation show that, in the case of OU semigroup,

L(fg) = (Lf)g + f(Lg) + 2 ⟨∇f,∇g⟩ .

We conclude.
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2.2 Gaussian Poincaré inequality

Theorem 2.2.1 (Gaussian Poincaré inequality). For every test function f whose gra-
dient belongs to L2(γn), we have

Varγn(f) ≤
∫
Rn

|∇f |2 dγn.

ϕ-entropy Given a convex function ϕ on an interval I ⊆ R, the ϕ-entropy of f : R → I
is

Eϕ
γn(f) =

∫
Rn

ϕ(f)dγn − ϕ

(∫
Rn

fdγn

)
.

Remark 1. Taking ϕ(x) = x2 on I = R recovers variance, and ϕ(x) = x log(x) on
I = R+ recovers entropy.

Proposition 2.2.1 (semigroup expression of ϕ-entropy). Let ϕ : I → R be C2 on an
interval I ⊆ R and f : Rn → I be C2

b . Then

Eϕ
γn(f) =

∫ ∞

0

∫
Rn

ϕ′′(Ptf) |∇Ptf |2 dγndt.

Proof. Let

α(t) =

∫
Rn

ϕ(Ptf)dγn.

Note that

• At time 0,

α(0) =

∫
ϕ(f)dγn.

• At time +∞,

lim
t→+∞

α(t)
(i)
=

∫
Rn

lim
t→+∞

ϕ(Ptf)dγn = ϕ

(∫
Rn

fdγn

)
.

(i) switches the order of limit and integral (by dominated convergence theorem,
and boundedness of f).
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Hence, we can write

Eϕ
γn(f) = α(0)− α(+∞) = −

∫ ∞

0

α′(t)dt.

We have

α′(t)
(i)
=

∫
Rn

∂tϕ(Ptf)dγn

=

∫
Rn

ϕ′(Ptf)(LPtf)dγn

(ii)
= −

∫
Rn

⟨∇ϕ′(Ptf),∇Ptf⟩ dγn

= −
∫
Rn

ϕ′′(Ptf) |∇Ptf |2 dγn

(i) switches the order of derivative and integral (by dominated convergence theorem).
(ii) applies integration by parts (2.2) and the boundary terms are 0. Additionally, for
LPtf to be well-defined, it suffices to have f in C2

b .

Lemma 1 (Gradient and OU semigroup commutation, pointwise). If f is smooth with
bounded derivative, (Pt) is OU semigroup, then

∇Ptf(x) = e−tPt(∇f)(x),

where Pt(∇f) is defined by extending Pt to Rn-valued function coordinate wise.

Proof. This is a consequence of Mehler’s formula in Prop 2.1.1, by switching the order
of derivative and integral.

Now we are ready to prove the Gaussian Poincaré inequality in Thm 2.2.1

Proof of Thm 2.2.1. First, start with f ∈ C2
b and ϕ(x) = x2. The semigroup expression

of variance in Prop 2.2.1 applies, and we have

Varγn(f) = 2

∫ +∞

0

∫
Rn

|∇Ptf |2 dγn.

Using the pointwise commutation property in Lem 1, we have∫
Rn

|∇Ptf |2 dγn =

∫
Rn

e−2t |Pt(∇f)|2 dγn
(i)

≤ e−2t

∫
Rn

Pt(|∇f |2)dγn

(ii)
= e−2t

∫
Rn

|∇f |2 dγn
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(i) applies Cauchy-Schwarz inequality and (ii) uses the fact that γn is stationary. Note
that

∫∞
0

e−2t = 1
2
. We conclude by noting that C2

b functions are dense in L2(γn). YC
— The density argument could be done in two steps 1. C∞

c is dense in Lp

(see e.g. Prop 8.17 in [Fol99]) 2. Because of Gaussian tail decay, we can
approximate C∞

c via C2
b functions using a Mollifier.

Remark 2 (On the optimality of the Poincaré constant). Check on affine functions
f(x) = ⟨x, a⟩ that the inequality is sharp. Leave as exercise.

2.3 Gaussian logarithmic Sobolev inequality

Theorem 2.3.1 (Gaussian logarithmic Sobolev inequality). For every test function f ,
which is nonnegative, C1

b , integrable, the following inequality holds

Entγn(f) ≤
1

2

∫
Rn

|∇f |2

f
dγn.

Proof of Thm 2.3.1. First, we start with f ∈ C2
b and f ≥ ϵ for some ϵ > 0. Then we

can apply the semigroup expression in Prop 2.2.1 for ϕ(x) = x log x to obtain

Entγn(f) =

∫ +∞

0

∫
Rn

|∇Ptf |2

Ptf
dγndt.

Using the pointwise commutation property in Lem 1, we have

|∇Ptf |2 = e−2t |Pt(∇f)|2

= e−2t

∣∣∣∣Pt

(
∇f√
f

√
f

)∣∣∣∣2
(i)

≤ e−2tPt

(
|∇f |2

f

)
Pt(f)

(i) uses Cauchy-Schwarz inequality. Then using stationarity, we have∫
Rn

|∇Ptf |2

Ptf
dγn ≤ e−2t

∫
Rn

Pt

(
|∇f |2

f

)
dγn ≤ e−2t

∫
Rn

|∇f |2

f
dγn

We conclude by noting that C2
b and > 0 functions are dense in the desired test function

class.

Remark 3 (On the optimality of the log-Sobolev constant). Check on functions f(x) =
e⟨x,a⟩ that the inequality is sharp. Leave as exercise.
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Poincaré inequality can be formally derived from the log-Sobolev inequality
Let h be a bounded, C1-smooth function. Take ϵ > 0 small enough such that 1 + ϵh is
nonnegative. We have the Taylor expansion

(1 + t) log(1 + t) = t+
t2

2
+ o(t2),

for t around 0. Then

Entγn(1 + ϵh) =
ϵ2

2
Varγn(h) + o(ϵ2).

Similarly, ∫
Rn

|∇(1 + ϵh)|2

1 + ϵh
dγn = ϵ2

∫
Rn

|∇h|2 dγn + o(ϵ2).

Finally, apply LSI in Thm 2.3.1 to f = 1+ ϵh, and take the limit ϵ → 0, we obtain the
Poincaré inequality for h.

2.4 Implication I: convergence to equilibrium

One might ask what are the implications of PI or LSI. We discuss two main applications

• Exponential convergence to equilibrium

• Concentration of Lipschitz functions

We still focus on the Gaussian case, the general case is deferred to a later lecture.
We have seen that the OU process Xt → γn in law as t tends to +∞. We shall

see now that the Poincaré inequality and the logarithmic Sobolev inequalities allow to
quantify this convergence.

Theorem 2.4.1. Let (Pt) be the OU semigroup. For every f ∈ L2(γn), we have

Varγn(Ptf) ≤ e−2tVarγn(f).

For every nonnegative integrable f , we have

Entγn(Ptf) ≤ e−2tEntγn(f).

Proof of Thm 2.4.1. We always start with test function f with enough regularity. Let
α(t) = Varγn(Ptf). By stationarity, we have

α(t) =

∫
Rn

(Ptf)
2dγn −

(∫
Rn

fdγn

)2

.
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Using the semigroup expression in Prop 2.2.1, we have

α′(t) = −2

∫
Rn

|∇Ptf |2 dγn.

Applying Gaussian Poincaré inequality in Thm 2.2.1, we obtain

α′t(t) ≤ −2α(t), ∀t ≥ 0.

By Gronwall’s inequality, we obtain

α(t) ≤ e−2tα(0),

which is exactly the first inequality.
For the second inequality, let β(t) = Entγn(Ptf). Taking derivative, using the

semigroup expression and apply LSI, we obtain

β′(t) ≤ −2β(t).

Using Gronwall’s inequality, we obtain

β(t) ≤ e−2β(0).

As we might generalize this convergence to other measures. Note that the decay
takes the form

• e
− 2

CPI
t
for the variance

• e
− 4

CLSI
t
for the entropy

with CPI = 1 and CLSI = 2 for γn.

Remark 4. Note that we can reformulate the above result in terms of convergence of
measure as follows

χ2(µPt || γn) ≤ e−2tχ2(µ || γn)
KL(µPt ∥ γn) ≤ e−2tKL(µ ∥ γn).

Here χ2(µ || ν) denotes the chi-square divergence defined by

χ2(µ || ν) := Varν(f), where f :=
dµ

dν
.
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Here KL( ∥ ) denotes the Kullback-Leibler divergence defined by

KL(µ ∥ ν) := Entν(f) =

∫
f log fdν, where f :=

dµ

dν
.

It is customary to set χ2(µ || ν) = +∞ and KL(µ ∥ ν) = +∞ if µ is not absolutely
continuous with respect to ν, or when f /∈ L2(ν) or f log f /∈ L1(ν) respectively.

Given the definitions, we show that d(µPt)
dγn

= Pt
dµ
dγn

in the L2(γn) sense, by taking
inner product with any test function g∫

d(µPt)

dγn
gdγn =

∫
gd(µPt)

(i)
=

∫
Ptgdµ

=

∫
Ptg

dµ

dγn
dγn

(ii)
=

∫
gPt

(
dµ

dγn

)
dγn

(i) is the definition of Pt operating on measures. (ii) follows from the reversibility of
γn under Pt.

2.5 Implication II: concentration of Lipschitz func-

tions

Lipschitz We say a function f : Rn → R is Lipschitz if

∥f∥Lip := sup
x ̸=y

|f(x)− f(y)|
|x− y|

< ∞.

A Lipschitz function is always continuous, and a theorem due to Hans Rademacher
states that it is differentiable almost everywhere (see Section 3.5 of [Fol99]).

Theorem 2.5.1 (Gaussian concentration of Lipschitz functions). For any n ≥ 1 and
f : Rn → R Lipschitz, and any real r > 0, we have

PZ∼γn(f(Z) ≥ γn(f) + r) ≤ exp

(
− r2

2 ∥f∥2Lip

)
,

where γn(f) = EX∼γn [f(X)].
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Note that the RHS does not depend on n. Using the result for f and −f , with
union bound, we get two-sided bound as

PZ∼γn(|f(Z)− γn(f)| ≥ r) ≤ 2 exp

(
− r2

2 ∥f∥2Lip

)
.

This means that under γn, f concentrates around its mean, with a width that depends
on the Lipschitz constant.

To prove Theorem 2.5.1, we need the following lemma.

Lemma 2 (Sub-gaussian bound on Laplace transform of Lipschitz functions). For any
n ≥ 1, and any Lipschitz function f : Rn → R, and any θ ∈ R,

L(θ) :=

∫
exp(θf)dγn ≤ exp

(
θ2

2
∥f∥2Lip + θγn(f)

)
.

In other words, ∫
exp (θ (f − γn(f))) dγn ≤ exp

(
θ2

2
∥f∥2Lip

)
.

Proof of Lem. 2. First, we observe that for any θ ∈ R, we have eθf ∈ L1(γn) since∫
eθfdγn ≤ e|θ||f(0)|

∫
e|θ|∥f∥Lip|x|dγn(x) < ∞.

Similarly, we can show that f ∈ L1(γn).
Second, let’s start with f bounded and C∞. For any θ > 0, applying the Gaussian

LSI to eθf , gives

E
[
θfeθf

]
− E[eθf ] logE[eθf ] ≤ 1

2
Eθ2eθf |∇f |2 ≤

∥f∥2Lip
2

Eθ2eθf .

Using the notation L(θ) = eθf , we have

θL′(θ)− L(θ) logL(θ) ≤
∥f∥2Lip θ2

2
eθf .

Define K(θ) := logL(θ)
θ

. Then the above gives

K ′(θ) ≤
∥f∥2Lip

2
.

Since L(0) = 1 and L′(0) = γn(f), and K(0) = (logL)′(0) = L′(0)/L(0) = γn(f). We

obtain that K(θ) ≤ γn(f) + θ
∥f∥2Lip

2
. That is what we wanted. For θ < 0 it suffices to

apply the above to −f .
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Third, we show that any Lipschitz function can be approximated by bounded and
C∞ functions, and the inequality remains valid under limits. We outline the proof
sketch of this approximation argument. Let f be Lispschitz. We define a sequence of
functions as follows, for k ≥ 1 and ϵ > 0,

fk,ϵ := max(−k,min(k, f)) ∗ ρϵ

where ∗ denotes convolution and ρϵ ∈ C∞(Rn,R), is a mollifier, satisfies

supp(ρϵ) ⊆ {x ∈ Rn : |x| ≤ ϵ} , ρϵ ≥ 0, and

∫
ρϵ(x)dx = 1.

For example, we can take ρϵ(x) = ϵ−nρ(ϵ−1 |x|) with ρ(x) := c−1e
− 1

1−x2 1|x|<1, c :=∫
ρ(x)dx. Now

• ∥fk,ϵ∥Lip ≤ ∥f∥Lip since

|fk,ϵ(x)− fk,ϵ(y)| ≤
∫

|fk(x− z)− fk(y − z)| ρϵ(z)dz ≤ ∥f∥Lip |x− y| ,

where fk := max−k,min(k,f).

• fk,ϵ tends to f pointwise, because if |x− y| ≤ ϵ, then

|fk(y)− f(x)| ≤ |fk(y)− fk(x)|+ |fk(x)− f(x)| ≤ ϵ ∥f∥Lip + |f(x)|1|f(x)|≥k →
k→∞,ϵ→0

0.

and

|fk,ϵ(x)− f(x)| ≤
∫
|x−y|≤ϵ

|fk(y)− f(x)| ρϵ(x− y)dy ≤ ϵ ∥f∥Lip + |f(x)|1|f(x)|≥k →
k→∞,ϵ→0

0.

• By dominated convergence, fk,ϵ tends to f in L1(γn).

• With pointwise convergence, we apply Fatou’s lemma to obtain the desired in-
equality∫

eθfdγn =

∫
lim

k→∞,ϵ→0
eθfk,ϵdγn ≤ lim inf

k→∞,ϵ→0

∫
eθfk,ϵdγn

≤ lim inf
k→∞,ϵ→0

exp

(
θ2

2
∥fk,ϵ∥2Lip + θ

∫
fk,ϵdγn

)
≤ exp

(
θ2

2
∥f∥2Lip + θ

∫
fdγn

)
.
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Now we are ready to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. It suffices to prove for ∥f∥Lip = 1 and γn(f) = 0 by scaling
and translation. For r > 0 and θ > 0, we have

PZ∼γn(f(Z) ≥ r) = PZ∼γn(e
θf(Z) ≥ eθr)

(i)

≤ E[eθf(Z)]

eθr

(ii)

≤ eθ
2/2

eθr
(iii)

≤ e−
1
2
r2 .

(i) applies Markov’s inequality. (ii) applies Lemma 2. (iii) picks the best θ = 1
2r2

which
makes the bound the smallest.

Example 1 (Application to empirical means). For any integer n ≥ 1 and N ≥ 1, if
X1, . . . , XN are independent and identically distributed random variables with law γn,
then for any Lipschitz function f : Rn → R, any real r ≥ 0,

P

(∣∣∣∣∣
∑N

j=1 f(Xj)

N
− E[f(X1)]

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− Nr2

2 ∥f∥2Lip

)
.

Proof. Consider the function (Rn)N → R,

F (x) =
1

N

(
N∑
j=1

f(xj)

)
.

Show that it is Lipschitz with

∥F∥Lip ≤
∥f∥Lip√

N
.

Remark 5. An examination of the proofs above reveals that the sub-Gaussian con-
centration inequalities are still valid when the Gaussian measure γn is replaced by any
probability measure on Rn which satisfies a logarithmic Sobolev inequality. This kind of
proof is known as Herbst argument [GR98].

Remark 6 (Poincaré inequality and exponential tail). The Herbst argument allows to
show that if a probability measure satisfies to a Poincaré inequality then this implies
sub-exponential concentration around the mean for Lipschitz functions.
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2.6 Alternative proof via local Poincaré inequality

We have used semigroup expression of ϕ-entropy from time 0 to ∞, to prove Gaussian
Poincaré inequality and LSI. We will see that a version of Poincaré inequality and LSI
that holds locally

Alternative proof of Thm 2.2.1, 2.3.1. Fix t ≥ 0 and x ∈ Rn, f : Rn → I, for s ∈ [0, t],
define

β(s) := Ps(ϕ(Pt−sf))(x)

where ϕ(z) = z2, I = R or ϕ(z) = z log z, I = R+.
We have

β(t)− β(0) = Pt(ϕ(f))− ϕ(Ptf).

Taking derivative, with respect to s, and setting g = Pt−sf , gives

β′(s) = Ps [Lϕ(g)− Lgϕ′(g)] .

Recall that for OU semigroup L = ∆− x · ∇, then

Lϕ(g)− Lgϕ′(g) = ϕ′′(g) |∇g|2 .

Thus

β′(s) = Ps [ϕ
′′(Pt−sf) |∇Pt−sf |]

(i)

≤ e−2(t−s)Ps(ϕ
′′(Pt−sf)Pt−s(|∇f |2))

(ii)

≤ e−2(t−s)Ps(Pt−s(ϕ
′′(f) |∇f |2))

= e−2(t−s)Pt(ϕ
′′(f) |∇f |2)

(i) follows fromMehler’s formula which gives the sub-commutation |∇Pt−sf | ≤ e−(t−s)Pt−s(|∇f |),
and (ii) follows from Jensen’s inequality for the convex function (u, v) 7→ ϕ′′(u)v2.

Integrating on [0, t], we obtain

β(t)− β(0) ≤ 1− e−2t

2
Pt

(
ϕ′′(f) |∇f |2

)
.

This gives

Pt(ϕ(f))(x)− ϕ(Pt(f)(x)) ≤
1− e−2t

2
Pt

(
ϕ′′(f) |∇f |2

)
.
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Sending t to ∞, we obtain the Gaussian PI and LSI.
Why local Poincaré inequality or local LSI? Pt(·)(x) can be interpreted as a measure

local at x as follows

Pt(f)(x) = E[f(Xt) | X0 = x] = EPt(·)(x)[f ]

where Pt(·)(x) = N (xe−t, 1− e−2t). So at any fixed time t, the above gives a Poincaré
and a log-Sobolev inequality with constants (1− e−2t) and (1− e−2t)/2 for Pt(·)(x).

2.7 Alternative proof via tensorization and Central

Limit Theorem

We study the tensorization property of the variance and the entropy. It allows to
provide a proof of the Poincaré and of the log-Sobolev inequalities for the Gaussian
measure by using the Central Limit Theorem, starting from elementary inequalities on
the two-point space.

The Gaussian measure appears as a limiting distribution in the asymptotic analysis
of product spaces, due to the central limit phenomenon. The simplest product space
is the discrete cube {0, 1}n equipped with the product Bernoulli probability measure

µn =
(
1
2
δ0 +

1
2
δ1
)⊗n

, which is the uniform probability measure. This model is called
“the two-point-space” when n = 1.

Given X ∼ µn, since each coordinate is i.i.d. with mean 1
2
and variance σ2 = 1

4
, the

Central Limit Theorem states that

1√
nσ2

n∑
j=1

(
Xj −

1

2

)
d→n→∞ γ1.

In other words, for any continuous and bounded f : R → R∫
{0,1}n

gndµn →
n→∞

∫
fdγ1,

where gn(x) := f
(

2√
n

∑n
j=1(xj − 1

2
)
)
.

Theorem 2.7.1 (Tensorization). Let (E1,A1, ν1), . . . , (En,An, νn) be probability spaces.
Let ν = ν1⊗· · ·⊗νn be the product probability measure on (E1 × · · · × En,A1 ⊗ · · · ⊗ An).
Let ϕ : I → R be convex and such that (u, v) 7→ ϕ′′(u)v2 is convex. Then for any
f : E1 × · · · × En → R such that ϕ(f) ∈ L1(ν1 ⊗ · · · ⊗ νn),

Eϕ
ν (f) ≤

n∑
i=1

EνEϕ
νi
(f),

where the subscript µi indicates the integration over i-th variable only while conditioning
on the other variables.
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Note that for ϕ(u) = u2 and I = R, we obtain the tensorization of variance

Varν1⊗···⊗νn(f) ≤ Eν1⊗···⊗νn

[
n∑

i=1

Varνi(f)

]
.

For ϕ(u) = u log u and I = [0,∞), we obtain the tensorization of entropy

Entν1⊗···⊗νn(f) ≤ Eν1⊗···⊗νn

[
n∑

i=1

Entνi(f)

]
.

Proof. By induction on n, we only have to consider the case n = 2. After rearranging
the terms, it suffices to prove that

Eϕ
µ2
[Eµ1f ] ≤ Eµ1

[
Eϕ

µ2
(f)
]
.

In the case of variance, this follows from the Cauchy-Schwarz inequality. Namely,

Varµ2(Eµ1f) = Eµ2

[
(Eµ1f − Eµ2Eµ1f)

2
]
≤ Eµ2Eµ1((f − Eµ2f)

2) = Eµ1 Varµ2 f.

The general case has to use the convexity of ϕ and convexity of ϕ′′(u)v2. First, we show
that the ϕ-entropy functional

f 7→ Eϕ
µ(f)

is convex as soon as F ϕ : (u, v) 7→ ϕ′′(u)v2 is convex. Since convexity is a unidimensional
property, it suffices to show that α(t) := Eϕ

µ(tf + (1− t)g) is convex. We have

α′(t) = Eµ [ϕ
′(tf + (1− t)g)(f − g)]− ϕ′(Eµ(tf + (1− t)g))Eµ(f − g)

α′′(t) = Eµ

[
ϕ′′(tf + (1− t)g)(f − g)2

]
− ϕ′′(Eµ(tf + (1− t)g)) [Eµ(f − g)]2 ≥ 0,

where the last step follows from Jensen’s inequality via the convexity of F ϕ. From the
convexity of α, we have

α(1) ≥ α(0) + α′(0)(1− 0),

which gives

Eϕ
µ(f) ≥ Eϕ

µ(g) + Eµ [(ϕ
′(g)− ϕ′(Eµg))(f − g)] ,

for any g. Thus, observing that the equality is achieved at f .

Eϕ
µ(f) = sup

g:ϕ(g)∈L1(µ)

Eϕ
µ(g) + Eµ [(ϕ

′(g)− ϕ′(Eµg))(f − g)] .
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Using the above variational formula for µ2, we obtain

Eϕ
µ2
[Eµ1(f)] = sup

g

{
Eϕ

µ2
(g) + Eµ2 [(ϕ

′(g)− ϕ′(Eµ2g))(Eµ1f − g)]
}

= sup
g

Eµ1

{
Eϕ

µ2
(g) + Eµ2 [(ϕ

′(g)− ϕ′(Eµ2g))(f − g)]
}

≤ Eµ1 sup
g

{
Eϕ

µ2
(g) + Eµ2 [(ϕ

′(g)− ϕ′(Eµ2g))(f − g)]
}

= Eµ1(Eϕ
µ2
(f)).

Now we proceed to see how tensorization gives an alternative proof of Gaussian
Poincaré inequality

Alternative proof of Gaussian Poincaré in Thm 2.2.1. First, we prove the Poincaré in-
equality for γ1. Let µn =

(
1
2
δ0 +

1
2
δ1
)⊗n

be the uniform distribution on the cube {0, 1}n.
For any g : {0, 1} → R, we have

Varµ1(g) =
g(0)2 + g(1)2

2
−
(
g(0) + g(1)

2

)2

=
(g(1)− g(0))2

4
.

Using the tensorization of variance, we obtain for n ≥ 1 and g : {0, 1}n → R,

Varµn(g) ≤
1

4
Eµn

[
n∑

i=1

(Dig)
2

]
(2.3)

where (Dig)
2(x) = (g(x+ ei)− g(x))2 where (e1, . . . , en) is canonical basis of Rn.

Now for any f : R → R and compactly supported, and set

g(x) = f(sn(x)) with sn(x) =
2√
n

n∑
i=1

(
xi −

1

2

)
.

Using Taylor expansion, we have for i = 1, . . . , n and x ∈ {0, 1}n,

(Dig)
2(x) =

[
2√
n
f ′(sn(x)) + o

(
1√
n

)]2
=

4

n
f ′2(sn(x)) + o

(
1

n

)
,

where the o is uniform in x since f is C2 and compactly supported. Applying Central
Limit Theorem, we obtain

Varγ1(f) = lim
n→∞

Varµn(g) ≤ lim
n→∞

Eµn [f
′2(sn)] = Eγ1(f

′2).

The middle inequality follows from Eq. (2.3).
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Second, to pass from γ1 to γn = γ⊗n
1 , we can sue the tensorization of variance again

to obtain

Varγn(f) ≤ Eγn

[
n∑

i=1

Varγi(f)

]

≤ Eγn

[
n∑

i=1

Eγi(∂if)
2

]
= Eγn |∇f |2 .

Finally, we can enlarge the class of test function form C2 and compactly supported
to L2(γn), by approximation arguments and Fatou’s lemma.

For the log-Sobolev inequality, we can proceed exactly as we did above for the
Poincaré inequality. The starting point is the two-point space inequality: for any
g : {0, 1} → R,

Entµ1(g
2) ≤ (g(1)− g(0))2

2
.

Let a := g(0) and b := g(1), then the above is equivalent to

a2 log(a2) + b2 log(b2)

2
− a2 + b2

2
log

a2 + b2

2
≤ (a− b)2

2
.

By homogegeneity of the inequality, we may assume b = 1, this leads to

a2 log a2

2
− a2 + 1

2
log

a2 + 1

2
≤ (a− 1)2

2
.

This is just one dimensional inequality, which can be proved by studying its derivatives
(for a > 0, the second derivative of LHS - RHS should be less than 0, so the first
derivative should have a single root at 1).

The strategy of using tensorization and the Central Limit Theorem to prove log-
Soobolv inequality for γn is from [Gro75].
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2.8 Exercises

Exercise 1. On the sharpness of Poincaré and LSI constants.

• Show that the Gaussian Poincaré inequality is sharp for f(x) = ⟨x, a⟩.

• Show that the Gaussian log-Sobolev inequality is sharp for f(x) = e⟨x,a⟩.

Exercise 2. Complete the proof in Example 1, which applies concentration of Lipschitz
functions to empirical means.

Exercise 3. 1. Show that

a2 log a2

2
− a2 + 1

2
log

a2 + 1

2
≤ (a− 1)2

2
,

for a ∈ R.

2. Complete the proof for Gaussian Log-Sobolev inequality via tensorization.

Exercise 4 (Poincaré ineqaulity for 1-D exponential). Consider the exponential mea-
sure on R+:

dµ(x) = λe−λxdx, x > 0

1. Show that the Poincaré inequality holds

Varµ(f) ≤
1

λ2

∫
|f ′|2 dµ.

2. Compare the constant to the Gaussian case, discuss when and why it is better or
worse.

Exercise 5 (Gaussian Poincaré via Stein’s method). Stein’s method provides a way to
study functional inequalities in the Gaussian setting.

1. (Stein’s identity) Show that for a function f ∈ C1
b ,

Eγ1 [Xf(X)] = E[f ′(X)].

2. For a mean zero function f , consider the ordinary differential equation for a
function g

g′(x)− xg(x) = f(x).

When does the solution g exists?

3. Using the above equation, prove Gaussian Poincaré inequality for γ1.
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