
401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 3 – Spectral gap, hypercontractivity and transport-ineq
Lecturer: Yuansi Chen Week 5-6 Spring 2025

Key concepts:

• Hermite polynomials

• eigenvectors of OU semigroup

• spectral gap and Poincaré inequality

• hypercontractivity and log-Sobolev inequality

• transport inequalities

– Pinsker inequality

– W1 transport inequality

– W2 transport inequality

3.1 Hermite polynomials

We first focus on the one dimensional case n = 1.
We can equip L2(γ1) =

{
f : R → R |

∫
f 2(x)dγ1(x) < ∞

}
with an inner product

⟨f, g⟩ =
∫

fgdγ1.

The inner product is well-defined because of Cauchy-Schwarz inequality. The set of real
polynomials is

R[X] :=

{
n∑

i=0

aiX
i | n ∈ N, ai ∈ R,∀i ∈ {0, . . . , n}

}
.

It is clear that R[X] ⊆ L2(γ1), because of the fast decay of the Gaussian tail.

Lemma 1. R[X] is dense in L2(γ1).
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Proof. For any f ∈ L2(γ1), consider the Laplace transform, for any t ∈ R.

Φ(t) =

∫
etxf(x)γ1(dx).

Φ(t) is finite because by Cauchy-Schwarz inequality

(Φ(t))2 =

(∫
etxf(x)γ1(dx)

)2

≤
∫

f 2dγ1

∫
e2txγ1(dx) < ∞.

Similarly, for any j ∈ N, the j-th order derivative is also well defined

Φ(j)(t).

Additionally, Φ is real analytic on a neighborhood of 0 (one way to see this is to place
in C. Φ(t) is real analytic iff it is restriction of a holomorphic function on C. etx is
holomorphic. Apply Morera’s theorem. ). If f ⊥ R[X] in L2(R), then the derivatives
of any order of Φ is zero. Together with the fact that Φ is analytic, we conclude that
Φ = 0. By the uniqueness of Laplace transform, f = 0 in L2(γ1).

Hermite polynomials The Hermite polynomials (Hk)k≥0 are the orthogonal poly-
nomials obtained from the canonical basis of R[X] by using the Gram-Schmidt orthog-
onalization for the inner product ⟨, ⟩ in L2(γ1). They are normalized in such a way that
the leading coefficient is always 1. The first few of them are

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3.

The fact that R[X] is dense in L2(γ1) means that (Hk)k≥0 form a complete orthogonal
system in the Hilbert space L2(γ1).

Lemma 2 (Properties of Hermite polynomials). Hermite polynomials satisfy

(a) Generating function: for any k ≥ 0 and x ∈ R,

Hk(x) =
dk

dsk
Gx(0), where Gx(s) = esx−

1
2
s2 =

∞∑
k=0

sk

k!
Hk(x).

(b) Three terms recursion formula: for any k ≥ 0 and x ∈ R,

Hk+1(x) = xHk(x)− kHk−1(x),

with convention H−1 = 0.
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(c) Recursive differential equation: for any k ≥ 0 and x ∈ R,

H ′
k(x) = kHk−1(x).

(d) Differential equation: for any k ≥ 0 and x ∈ R,

H ′′
k (x)− xH ′

k(x) + kHk(x) = 0.

(e) The sequence (Hk/
√
k!)k≥0 is orthonormal in L2(γ1) and its span is dense.

Proof. First, we prove (b) the recursion formula by induction. It is verified for k = 0, 1.
Suppose it is verified up to k − 1, for k, we need to show that

Hk+1(x) = xHk(x)− kHk−1(x)

is orthogonal to all lower degree polynomials, as it already has the correct degree and
leading coefficient. For j <= k − 2, ⟨Hk+1, Hj⟩ = 0 follows from the definition and the
orthogonality of previous polynomials. For k,

⟨Hk+1, Hk⟩ = ⟨xHk − kHk−1, Hk⟩
= ⟨xHk, Hk⟩

=

∫
xH2

k(x)dγn(x) = 0

because, γn is symmetric around 0. For k − 1,

⟨Hk+1, Hk−1⟩ = ⟨xHk − kHk−1, Hk−1⟩
= ⟨xHk, Hk−1⟩ − k ⟨Hk−1, Hk−1⟩
(i)
= 0

(i) follows from integration by parts.
Second, we prove (a). It suffices to show that the polynomials defined via the

generating function satisfies the same recursion formula. We differentiate the series
term-by-term.

∂

∂s
G(x, s) =

∂

∂s

(
esx−

s2

2

)
= (x− s)esx−

s2

2

∂

∂s
G(x, s) =

∞∑
k=0

Hk(x)

k!
ksk−1 =

∞∑
k=1

Hk(x)

(k − 1)!
sk−1

We identify the terms in the series.
(c) and (d) follows from (b).
(e) follows from Plancherel’s theorem.
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Theorem 3.1.1 (Hermite polynomials as eigenvectors of Ornstein-Uhlenbeck semi-
group). For any k ≥ 0 and t ≥ 0, the polynomials Hk is an eigenvector of the OU semi-
group Pt (respectively OU infinitesimal generator L) associated to the eigenvalue e−kt

(respectively −k). In other words, for any f =
∑

k≥0 akHk ∈ L2(γ1) with ak =
1
k!
⟨f,Hk⟩

and for any t ≥ 0,

Lf = −
∑
k≥0

kakHk

Ptf =
∑
k≥0

e−ktakHk.

Proof of Thm 3.1.1. Recall that for OU semigroup L = ∆ − x · ∇. According to
Lemma 2 (Differential equation), we have

LHk = −kHk.

This verifies that Hk is an eigenvector of L for eigenvalue k.
Recall that

Pt(f)(x) = E[f(Xt) | X0 = x] =

∫
Rn

f
(√

ρx+
√
1− ρy

)
γ1(dy),

where ρ = e−2t. Apply it to x 7→ Gx(s) = esx−
1
2
s2 , gives

Pt(G·(s)) = E
[
es(

√
ρx+

√
1−ρZ)− 1

2
s2
]

= es(
√
ρx)− 1

2
s2E

[
es

√
1−ρZ

]
(i)
= es(

√
ρx)− 1

2
s2e

1
2
s2(1−ρ)

= Gx(s
√
ρ).

(i) follows from completing the square and Gaussian integral.
Using the generating series property of Lemma 2, we have

Pt(Hk)(x) = Pt

(
dk

dsk
G·(0)

)
(x)

=
dk

dsk
Pt (G·(s)) (x) |s=0

=
dk

dsk
Gx(se

−t) |s=0

= e−ktHk(x)
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We are ready to prove Poincaré inequality via Hermite polynomials

Proof of Gaussian Poincaré inequality via Hermite polynomials. For f =
∑

k≥0 akHk,
we have

a0 = ⟨f,H0⟩ =
∫

fdγ1.

and

Varγ1(f) =

∫
f 2dγ1 − a20

(i)
=

∑
k≥1

k!a2k

≤
∑
k≥1

k · k!a2k

= −
∫

fLfdγ1.

(i) follows from Plancherel’s identity. The equality is achieved when ak = 0 for k ≥ 2,
in other words f is a linear function.

Spectral gap is the length between the first eigenvalue 0 and the second eigenvalue
of L. Note that for any symmetric semigroup Pt, we always have

• The first eigenvalue of L is 0, because Pt1 = 1 and L1 = 0 after taking derivative.

• Eigenvalues of L are negative. Recall the definition of Lf = limt→0
Ptf−f

t
. So we

have

⟨f, Lf⟩ = lim
t→0

1

t
⟨f, (Pt − Id)f⟩

= lim
t→0

1

t
[⟨f, Ptf⟩ − ⟨f, f⟩]

≤ 0

The last step follows because Pt is a contraction in L2(µ)

In the case of OU semigroup, the second eigenvalue is −1, and the gap is 1.
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Exponential decay of variance from the spectral gap We have

a0 = ⟨f,H0⟩ =
∫

fdγ1 =

∫
Ptfdγ1.

Varγ1(Ptf) =

∫
(Ptf − a0)

2 dγ1

=
∑
k≥1

a2ke
−2ktk!

≤ e−2t
∑
k≥1

a2kk!

= e−2t Varγ1(f).

Second, we move to multivariate Hermite polynomials Since the multivariate Gaus-
sian is a product measure. We have similar results in the multivariate case.

1. The multivariate real polynomial R[X1, · · · , Xn] is dense in L2(γn).

2. The multivariate Hermite polynomials are

Hk1,...,kn(X1, . . . , Xn) = Hk1(X1) · · ·Hkn(Xn).

They form an orthogonal family in L2(γn). Also, they form a complete orthogonal
system.

3. The OU infinitesimal generator in Rn writes

L = ∆− x · ∇ = L1 + · · ·+ Ln,

where Li = ∂2
i − xi∂i is the one-dimensional OU infinitesimal operator acting on

the i-th variable. And

L(Hk1,...,kn) = −(k1 + · · ·+ kn)Hk1,...,kn .

4. The spectral gap of L is equal to 1 for any dimension n ≥ 1. Thus, the dimension-
independent Poincaré inequality.

3.2 Hypercontractivity

We have seen that any semigroup Pt is a contraction in Lq for q ≥ 1. Because of
log-Sobolev inequality, the OU semigroup contracts better than that! This is where the
“hyper” comes from in hypercontractivity.

3-6



401-3382-25L Lecture 3 Spring 2025

Theorem 3.2.1 (Gaussian hypercontractivity (Nelson)). Let p > 1 and t > 0, and set
pt = 1 + (p− 1)e2t. Observe that pt > p. Then for any f ∈ Lp(γn), we have

∥Ptf∥pt ≤ ∥f∥p .

In words, Pt is a bounded operator from Lp(γn) to Lpt(γn) and has norm 1. Moreover,
if q > pt, then Pt is not even bounded from Lp(γn) to Lq(γn).

Proof. Without loss of generality, we may assume f ≥ 0 since |Ptf | ≤ Pt |f |. Set
α(t) = log ∥Pt∥pt . One want to calculate α′(t), show that α′(t) ≤ 0 via log-Sobolev
inequality and then conclude.

We have

α′(t) =

(
1

pt
log

∫
(Ptf)

ptdγn

)′

= − p′t
p2t

log

∫
(Ptf)

ptdγn +
1

pt

(
∫
(Ptf)

ptdγn)
′∫

(Ptf)ptdγn

= − p′t
p2t

log

∫
(Ptf)

ptdγn +
1

pt

(
∫
(p′t logPtf + pt

LPtf
Ptf

)(Ptf)
ptdγn)∫

(Ptf)ptdγn

=
p′t
p2t

1∫
(Ptf)ptdγn

[
Entγn [(Ptf)

pt ] +
p2t
p′t

∫
(LPtf)(Ptf)

pt−1dγn

]
.

From integration by parts, we know that∫
|∇(Ptf)

pt|2

(Ptf)pt
dγn = p2t

∫
|∇(Ptf)|2 (Ptf)

pt−2dγn

=
p2t

pt − 1

〈
∇(Ptf),∇(Ptf)

pt−1
〉

= − p2t
pt − 1

∫
(LPtf)(Ptf)

pt−1dγn,

where the last step applies integration by parts. Note that 2(pt − 1) = p′(t), we obtain
that

α′(t) =
p′t
p2t

1∫
(Ptf)ptdγn

[
Entγn [(Ptf)

pt ]− 1

2

∫
∇(Ptf)

pt

(Ptf)pt
dγn

]
.

By log-Sobolev inequality, we obtain

α′(t) ≤ 0,∀t ≥ 0.

Hence,

log ∥Ptf∥pt = α(t) ≤ α(0) = log ∥f∥p .
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Finally, if q > pt, we know that fλ(x) = e⟨λ,x⟩ achieves equality in log-Sobolev
inequality. We have

∥fλ∥p = e
1
2
p|λ|2

Ptfλ = e
1
2
|λ|2(1−e−2t)fλe−t ,

therefore,

∥Ptfλ∥q
∥fλ∥p

= e
1
2
λ2(e−2t(q−1)+1−p)

If q > pt = 1 + (p− 1)e2t, then the above quantity tends to infinity as |λ| → ∞.

Remark 1 (Hypercontractivity vs. log-Sobolev inequality). This proof shows more gen-
erally that a semigroup satisfying the log-Sobolev inequality is hypercontractive. More-
over, it is pretty clear from the argument that the implication can be reversed and that
log-Sobolev and hypercontractivity are equivalent. This equivalence between hypercon-
tractivity and log-Sobolev inequality is due to Leonard Gross [Gro75].

3.3 Transport inequalities

For any p ≥ 1, let Pp(Rn) be the set of probability measures on Rn with finite moment
of order p. In other words, µ ∈ Pp(Rn) if |·|p ∈ L1(µ).

Wasserstein-Kantorovich distance on Pp(Rn) It is defined for any µ, ν ∈ Pp(Rn)
by

Wp(µ, ν) = inf
π∈Π(µ,ν)

[∫ ∫
Rn×Rn

|x− y|p dπ(x, y)
] 1

p

,

where Π(µ, ν) is the set of probability measures on the product space Rn × Rn with
marginals µ and ν. It can be shown that Wp is a distance on Pp(Rn), and that for any
(µk)k∈N and µ ∈ cPp(Rn), we have Wp(µk, µ) → 0 if and only if µk → µ with respect to
continuous test functions f : Rn → R such that x 7→ f(x)/(1 + |x|p) is bounded.

Note that by Jensen’s inequality, Wp ≤ Wq for p < q.

Variational definition of Wasserstein distance The Kantorovich-Rubinstein du-
ality (see Section 9.1 [BGL13]) states that for any p ≥ 0 and µ, ν ∈ Pp(Rn),

Wp(µ, ν)
p = sup

[∫
fdµ−

∫
gdν

]
,
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where the supremum runs over all bounded continuous functions f, g : Rn → R such
that f(x) − g(y) ≤ |x − y|p. For W1, it can also be written as follows (when the cost
function is a distance function)

W1(µ, ν) = sup

[∫
fdµ−

∫
fdν

]
where the supremum runs over all 1-Lipschitz functions (with respect to | · |) functions
f .

In general, transport inequalities (or transport cost inequalities) are inequalities
compare a transport cost distance (Wasserstein distance) to a fluctuation distance ex-
pressed by KL divergence. For example

Wp(µ, ν) ≤
√

CKL(ν ∥ µ).

In the following, we discuss three cases

• Pinsker inequality where distance is taken as 1x ̸=y, and p = 1

• p = 1, and distance | · |

• p = 2

3.3.1 Pinsker-Csizsár-Kullback inequality

The first example of a transport inequality is the Pinsker-Csizsár-Kullback inequality.

Theorem 3.3.1 (Pinsker-Csizsár-Kullback inequality).

dTV (µ, ν) ≤
√

KL(ν ∥ µ)

2
.

where dTV (µ, ν) = supA∈B(Rn) |µ(A)− ν(A)|

Proof. Let f ≥ 0 denotes the Radon-Nikodym derivative dν
dµ
. Recall the density formula

of the TV distance, we have

dTV (µ, ν) =
1

2

∫ ∣∣∣∣1− dν

dµ

∣∣∣∣ dµ.
It suffices to show that [∫

|1− f | dµ
]2

≤ 2Entµ(f).
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Set fs = sf + (1− s)1, s ∈ [0, 1], consider

Λ(s) := 2Entµ(fs)−
[∫

|1− fs| dµ
]2

= 2Entµ(fs)− s2
[∫

|1− f | dµ
]2

.

We have, since Eµfs = 1

Λ′(s) = 2 {E [(f − 1) log fs + (f − 1)]− [E(f − 1) logEfs + E(f − 1)]} − 2s [Eµ|1− f |]2

Λ′′(s) = 2Eµ
(f − 1)2

fs
− 2 [Eµ|1− f |]2

Note that Λ(0) = Λ′(0) = 0, and by Cauchy-Schwarz inequality, we have

Λ′′ ≥ 0.

Integrating, we obtain that Λ(s) ≥ 0. In particular, Λ(1) ≥ 0, which is desired.

3.3.2 Transport inequality W1 and sub-Gaussian concentration
of Lipschitz functions

Bobkov and Götze [BG99] discovered that W1 transport inequality is the dual reformu-
lation of the sub-Gaussian concentration for Lipschitz functions. The proof relies on
the Kantorovich-Rubinstein dual representation of W1.

Theorem 3.3.2. For any µ ∈ P1(Rn) and any constant c > 0, the following two
statements are equivalent

(a). Sub-Gaussian bound on Laplace transform of Lipschitz functions: for
any Lipschitz function f : Rn → R and any θ ∈ R,

L(θ) :=

∫
exp(θf)dµ ≤ exp

(
c

2
θ2 ∥f∥2Lip + θ

∫
fdµ

)
.

(b). Transport inequality W1 for µ: for any ν ∈ P1(Rn),

W1(µ, ν) ≤
√

2cKL(ν ∥ µ).

In particular, both of the above holds for µ = γn with c = 1 and any n ≥ 1.

Before we prove the theorem, we recall the variational formula for the entropy.
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Lemma 3 (Variational formula for the entropy). For any measurable function h : Rn →
R+ such that Eµh = 1, we have

Entµ(h) = sup
g measurable

{∫
ghdµ− log

∫
egdµ

}
In words, the entropy is the Legendre transform (convex dual) of the log-Laplace

transform.

Proof of Lemma 3. By Jensen’s inequality, we have∫
eg

h
hdµ ≥ e

∫
ghdµ−

∫
(log h)hdµ,

which gives

log

∫
egdµ ≥

∫
ghdµ−

∫
h log hdµ.

Hence, ∫
ghdµ− log

∫
egdµ ≤

∫
h log hdµ.

Taking sup over all g, and note that equality is achieved when g = log h, we conclude.

Proof of Theorem 3.3.2. Without loss of generality, it suffices to deal with µ(f) = 0
and ∥f∥Lip = 1 by translation and scaling.

(a) =⇒ (b): take g = θf − c
2
θ2, using the varitional formula for the entropy, we

have

Entµ(h) ≥
∫ (

θf − c

2
θ2
)
hdµ− log

∫
eθf−

c
2
θ2dµ

≥
∫ (

θf − c

2
θ2
)
hdµ.

Then with Eµh = 1, we have∫
(fh− f)dµ ≤ c

2
θ +

1

θ

∫
h log hdµ.

Taking infimum over θ > 0, we obtain∫
(fh− f)dµ ≤

√
2c

∫
h log hdµ.

Taking supremum over f , we conclude using Kantorovich–Rubinstein dual formulation.

(b) =⇒ (a): note that the argument can be reversed.
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3.3.3 Transport inequality W2

The following theorem provides the dual reformulation of the W2 transportation in-
equality, via infimum convolution. TODO
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3.4 Exercises

Exercise 1. For Hermite polynomials,

• Show that H5 = x5 − 10x3 + 15x via three terms recursion formula.

• Show the same via Gram-Schmidt orthogonalization.

• Show the same via the generating function.

• Compute the expansion of x5 − x under the Hermite polynomials

Exercise 2. Derive (c) and (d) in Lemma 2.

Exercise 3. Show that the zeros of Hn(x) are real and distinct (hint: use recursive
differential equation).

Exercise 4. Let Pt be the OU semigroup. Take f(x) = x2. Compute Ptf(x) explicitly.
Show that

∥Ptf∥qt ≤ ∥f∥2 ,

where qt = 1 + (p− 1)e−2t. Can we take a larger qt?

Exercise 5. Log-Sobolev Inequality for general product space domains. TODO
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