
401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 4 – Bakry-Émery Criterion
Lecturer: Yuansi Chen Week 8-9 Spring 2025

Key concepts:

• Carré du champ, iterated carré du champ

• Curvature - dimension condition

• Gamma-calculus to derive Poincaré inequality

• Langevin semigroup

• Weak and strong commutation

• Log-Sobolev inequality

4.1 Gamma calculus

Let (Xt) be a Markov process, E be the state space, (Pt) be the associated semigroup
and L be the generator. Given a test function f , and t > 0, we consider

β(s) := Ps

(
(Pt−sf)

2
)
, s ∈ [0, t]. (4.1)

This is the same quantity that we have seen in the proof of local Poincaré inequality
(in Week 3-4).

In the Gaussian Poincaré inequality case, we have seen that taking derivative of
β(s) reduces the Poincaré inequality to bounding terms along the derivative, which we
need to use the so-called sub-commutation. The main purpose of the first part of this
lecture is to check whether the same idea to more general measures.

Notice that

β(t)− β(0) = Pt(f
2)− (Ptf)

2.

So if the semigroup Pt admits a stationarity measure µ (i.e.,
∫
Ptfdµ =

∫
fdµ,∀f) and

µ is ergodic (i.e., Ptf →
∫
fdµ), then letting t → ∞, the LHS of the above equation

becomes Varµ(f), which is the term in Poincaré inequality we want to upper bound.
To upper bound this quantity, we analyze its derivative. We start by establishing a few
properties of β.
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Lemma 1. We have

(a) β is non-decreasing. That is,

β(s+ ϵ) ≥ β(s), ∀s ≥ 0, ϵ > 0

(b) The first derivative

β′(s) = 2Ps(Γ(g)),

where g = Pt−sf , and Γ(g) := 1
2
[Lg2 − 2gLg] is the carré du champ. More

generally, the carré du champ is introduced via the bilinear form

Γ(h1, h2) :=
1

2
[L(h1h2)− h1(Lh2)− (Lh1)h2] ,

and Γ(h) = Γ(h, h) ≥ 0 because β is nondecreasing.

(c) The second derivative

β′′(s) = 2Ps(LΓ(g)− 2Γ(Lg, g))

= 4Ps (Γ2(g)) ,

where Γ2(h) := 1
2
[LΓ(h)− 2Γ(Lh, h)] is called the iterated version of the

carré du champ.

Proof of Lemma 1. (a) Using the semigroup property, we have

β(s+ ϵ) = PsPϵ

(
(Pt−s−ϵf)

2)
(i)

≥ Ps

(
(PϵPt−s−ϵf)

2)
= Ps

(
(Pt−sf)

2) = β(s),

(i) follows from Jensen’s inequality applied to the convex function x 7→ x2.

(b) Recall that using the definition of the infinitesimal generator L, ∂sPs = LPs =
PsL. Then with g = Pt−sf ,

β′(s) = ∂sPs(g
2) + Ps(2(∂sg)g)

= LPs(g
2) + Ps(2(−Lg)g)

= Ps

[
Lg2 − 2gLg

]
= 2PsΓ(g).

To prove that Γ(h) ≥ 0, we notice that

β′(s) = 2Ps(Γ(Pt−sf)).

Let s = 0, using that β is nondecreasing, β′(0) = Γ(Ptf) ≥ 0. Finally, let t → 0,
yields the nonnegativity of Γ.
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(c) First, using that Γ is a bilinear form, we have

∂sΓ(g) = 2Γ(∂sg, g) = −2Γ(Lg, g).

We obtain

β′′(s) = 2(∂sPs)(g) + 2Ps(∂sΓ(g))

= 2Ps [LΓ(g)− 2Γ(Lg, g)]

= 4PsΓ2(g).

Intuitively, if we have a way to relate β′′(s) with β′(s), then we can bound β′(s),
which in turn would allow us to bound the desired quantity β(t) − β(0). Let’s recall
what happened when (Xt) is the Ornstein-Uhlenbeck (OU) semigroup.

Example 1 (β in OU semigroup). When (Xt) is the OU semigroup, we know the
infinitesimal generator L takes the form

Lf = ∆f − ⟨x,∇f⟩ .

Having the expression for L is sufficient to derive both Γ and Γ2. After some basic
derivative calculation, assuming f is twice differentiable, we obtain

Γ(f) = |∇f |2

Γ2(f) =
∑
ij

(∂ijf)
2 + |∇f |2 .

Then we always have Γ2(g) ≥ Γ(f), which implies that

β′′(s) ≥ 2β′(s).

Solving the differential inequality via Grönwall’s lemma, we obtain

β′(s) ≥ e2sβ′(0), and

β′(s) ≤ e−2(t−s)β′(t) = 2e−2(t−s)Pt(Γ(f)).

With the second inequality, we have

β(t)− β(0) =

∫ t

0

β′(s)ds ≤ 2PtΓ(f)

∫ t

0

e−2(t−s)ds = 2PtΓ(f)
1− e−2t

2
=

(
1− e−2t

)
Pt(|∇f |2).

Letting t → ∞, we obtain the Gaussian Poincaré inequality.

4-3



401-3382-25L Lecture 4 Spring 2025

Remark 1. The inequality β′(t) ≥ e2tβ′(0) is exactly

|∇Ptf |2 ≤ e−2tPt(|∇f |2).

In Week 3-4, we obtained this sub-commutation property using the explicit formula of
the OU semigroup, via the Mehler formula. The proof only uses the relationship between
β′ and β′′. This is exactly the purpose of Gamma-calculus, we want to do similar things
for semigroups without an explicit expression.

We introduce one sufficient condition to relate β′ and β′′.

Curvature-dimension condition. We say that the Markov process (Xt) satisfies
the curvature-dimension condition CD(ρ, n), if for any function f we have

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2.

Remark 2. Since we are mostly interested in dimension-free functional inequalities, in
this course, we focus on the curvature-dimension condition CD(ρ,∞), which reads

Γ2(f) ≥ ρΓ(f).

The following establishes the equivalence between weak commutation and the curvature-
dimension condition.

Lemma 2 (Weak commutation). Let ρ > 0, the following two are equivalent

(a) The semigroup (Pt) satisfies CD(ρ,∞)

(b) For every function f and t > 0, we have Γ(Ptf) ≤ e−2ρtPtΓf .

Proof of Lemma 2. We have

β′(s) = 2Ps(Γ(Pt−sf))

β′′(s) = 4Ps(Γ2(Pt−sf)).

“(a) =⇒ (b).” CD(ρ,∞) implies that β′′(s) ≥ 2ρβ′(s). Grönwall’s lemma gives (2).
“(b) =⇒ (a).” (2) implies that β′(s) ≥ e2ρsβ′(0). Taylor expansion around s = 0,
gives

β′′(0) ≥ 2ρβ′(0),

which is Γ2(Ptf) ≥ ρΓ(Ptf). Let t → 0 to obtain CD(ρ,∞).
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4.2 Poincaré inequality from curvature-dimension

condition

We first define the general version of Poincaré inequality. We assume that the semigroup
Pt admits a stationarity measure µ (i.e.,

∫
Ptfdµ =

∫
fdµ,∀f) and µ is ergodic (i.e.,

Ptf →
∫
fdµ).

Dirichlet form The Dirichlet form is the quadratic form given by

E(f, g) :=
∫
E

Γ(f, g)dµ.

And we write E(f) := E(f, f). Note that by stationarity, we have
∫
L(f 2)dµ = 0 and

the Dirichlet has a simplified form

E(f) =
∫

Γ(f)dµ = −
∫

f(Lf)dµ.

General Poincaré inequality We say µ satisfies the Poincaré inequality with con-
stant CP if for every test function f ,

Varµ(f) ≤ CPE(f).

Theorem 4.2.1 (Poincaré via curvature-dimension condition (or Gamma-two criterion,
or Bakry-Émery criterion)). For ρ > 0, CD(ρ,∞) implies that µ satisfies Poincaré
inequality with constant 1/ρ.

Proof of Theorem 4.2.1. For β(s) = Ps((Pt−sf)
2) we have

β′(s) = 2Ps(ΓPt−sf).

Using the weak commutation in Lemma 2, we obtain

β′(s) ≤ e−2ρ(t−s)β′(t) = e−2ρ(t−s) · 2Pt(Γf).

Therefore,

Pt(f
2)− (Ptf)

2 = β(t)− β(0) =

∫ t

0

β′(s)ds ≤ 1− e−2ρt

2ρ
2Pt(Γ(f)).

Letting t → ∞, and using ergodicity, we conclude.

Just like in the Gaussian Poincaré inequality case, the Poincaré inequality is equiv-
alent to an exponential decay of variance.
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Proposition 4.2.1 (Variance decay). The following two statements are equivalent:

(a) µ satisfies the Poincaré inequality with constant CP .

(b) For any function f , Varµ(Ptf) ≤ e−2t/CP Varµ(f).

Proof. Note that

d

dt
Var(Ptf) =

d

dt

∫
(Ptf)

2dµ = −2E(Ptf).

“(a) =⇒ (b)”, applying Poincaré allows to bound RHS by variance again. Then it
suffices use Grönwall’s lemma.
“(b) =⇒ (a)”, Taylor expansion of Varµ(Ptf) ≤ e−2t/CP Varµ(f) around t = 0, and
take limit t → 0.

Next, we show that if µ is reversible, then the Poincaré inequality is equivalent to
an integrated version of the CD(ρ,∞) condition.

Proposition 4.2.2 (Integrated Gamma-two criterion). Let ρ > 0. Consider the fol-
lowing two:

(a) For any f , we have ∫
E

Γ2(f)dµ ≥ ρ

∫
E

Γ(f)dµ.

(b) µ satisfies Poincaré with constant 1/ρ.

We always have (a) =⇒ (b) and if µ is reversible, they are equivalent.

Proof. TODO

4.3 Langevin semigroup

Given a measure µ on Rn, to prove a Poincaré inequality using the above Gamma-
calculus, we first need to find a semigroup which has its stationary measure µ. Can we
always find a semigroup?

Given µ = 1
Z
e−V , where Z =

∫
Rn e

−V is the normalization constant. Assume V :
Rn → R is a smooth function. Consider the Langevin stochastic differential equation
(SDE)

dXt = −∇V (Xt)dt+
√
2dBt.

If ∇V is Lipschitz, then the above SDE has a unique strong solution (see e.g. [Oks13]).
Then its solution (Xt) is a Markov process and in this section, let (Pt) be the associated
semigroup.
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Langevin semigroup We have

1. Ptf(x) = E[f(Xt) | X0 = x]

2. Its infinitesimal generator is

Lf = ∆f − ⟨∇V,∇f⟩ .

3. µ is reversible for the process.

4. µ is ergodic.

Proof. TODO

Remark 3. When V = |x|2 /2, the semigroup (Pt) is the Ornstein-Uhlenbeck semigroup
and the stationary measure µ is the standard Gaussian. The Langevin semigroup can
be seen as a generalization. The main difficulty of the generalization is that (Pt) no
longer has an explicit expression any more. We hope to impose sufficient conditions on
V such that the Gamma-calculus applies, and then Poincaré inequality and log-Sobolev
inequality can be obtained as we did for the OU semigroup.

Lemma 3 (Gamma-calculus for Langevin semigroup). Given the infinitesimal genera-
tor Lf = ∆f − ⟨∇V,∇f⟩, we have

Γ(f, g) = ⟨∇f,∇g⟩
Γ2(f) = trace

(
(∇2f)2

)
+
〈
∇2V∇f,∇f

〉
.

Here trace ((∇2f)2) =
∑

ij(∂ijf)
2.

Lemma 4 (When Langevin semigroup satisfies CD). Let ρ > 0. The Langevin semi-
group satisfies CD(ρ,∞) if and only if

∇2V ⪰ ρIn.

Proof. If ∇2V ⪰ ρIn, using the expression of Γ2 in Lemma 3, we have

Γ2(f) ≥ ρ |∇f |2 = ρΓ(f).

Conversely, taking linear functions f(x) = ⟨u, x⟩, then ∇2f = 0 and ∇f = u. From
CD, we have 〈

∇2V u, u
〉
≥ ρ ⟨u, u⟩ .

It holds for all u, we conclude.
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Corollary 1. Let ρ > 0, and let µ = e−V is a probability measure. Assume ∇2V ⪰ ρIn
pointwise. Then µ satisfies the Poincaré inequality

Varµ(f) ≤
1

ρ

∫
Rn

|∇f |2 dµ.

Proof. Apply Lemma 4 and then Theorem 4.2.1.

Remark 4. It is possible to generalize the above argument (Bakry-Émery criterion)
to a Riemmanian manifold M equipped with the normalized volume measure volg, the
Laplace-Beltrami operator, and a vector field. Bochner’s formula gives the form of Γ2

for Riemmanian Langevin semigroup, where a new term Ric(∇,∇) appears in Γ2. And
the Bakry-Émery curvature in the curvature-dimension condition becomes the sum of a
curvature of the space and a curvature of the Markov process.

4.4 Gamma-calculus for general ϕ-entropy of a dif-

fusion

We have seen how the Gamma calculus enables us to derive Poincaré inequality. We
would like to do the same for log-Sobolev inequality. Recall the notion of ϕ-entropy
when we derived Gaussian log-Sobolev inequality. Given a positive function f , we are
interested in

β(s) = Ps (ϕ (Pt−sf)) ,

where ϕ = x log x. Notice that

β(t)− β(0) = Pt(ϕ(f))− ϕ(Pt(f)).

So if the semigroup Pt admits a stationary measure µ and µ is ergodic, then letting t →
∞, the above expression recovers Entµ(f), which is the term in log-Sobolev inequality
we want to upper bound.

(Continuous) diffusion We say a Markov process (Xt) is a diffusion if its infinites-
imal generator L satisfies

L(ϕ(f)) = ϕ′(f)Lf + ϕ′′(f)Γ(f).

Typically, a diffusion is the solution of a stochastic differential equation driven by the
Brownian motion.

4-8



401-3382-25L Lecture 4 Spring 2025

Example 2 (Langevin semigroup is a diffusion). For the Langevin semigroup, we have

Lf = ∆f − ⟨∇V,∇f⟩ .

And

Lϕf = ∆(ϕ(f))− ⟨∇V,∇ϕ(g)⟩
= ϕ′(f)Lf + ϕ′′(f) |∇f |2 .

Lemma 5. We have

(a) β is non-decreasing. That is,

β(s+ ϵ) ≥ β(s), ∀s ≥ 0, ϵ > 0

(b) The first derivative

β′(s) = Ps [L(ϕ(g))− ϕ′(g)Lg]

where g = Pt−sf . In the case of diffusion, it simplifies to

β′(s) = Ps(ϕ
′′(g)Γ(g))

(i)
= Ps(Γ(g)/g)

(i) follows when ϕ = x log x, ϕ′′ = 1/x.

Proof. (a) It follows the same proof using Jensen’s inequality and ϕ is convex.

(b) When taking derivative, it hits s in two places.

Remark 5. The main reason that we focus on (continuous) diffusion is that we can
simplify the first derivative β′. According to the above lemma, normally, the term Lg in
β′ makes it look like that β′ depends on the second derivative of g. However, as it was
the case in Lemma 1, β′ only depends on Γ, which only depends on the first derivative
of g, when (Pt) is a continuous diffusion. Intuitively, having a continuous diffusion
allows us to have integration by parts, and integration by parts saves us a derivative!

A typical example of a Markov that is not a continuous diffusion is a process taking
values on a discrete space, like the random walk on a graph or on the Boolean hypercube
{−1, 1}n.

Lemma 6 (Strong commutation). If (Pt) is a diffusion satisfying CD(ρ,∞) then√
ΓPtf ≤ e−ρtPt

(√
Γf

)
.
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Proof. Let α(s) = Ps

(√
Γ(Pt−sf)

)
. We have

α′(s) = Ps

(
Γ(g)−1/2Γ2(g)−

1

4
g−3/2ΓΓg

)
.

Then

α′(s)− ρα(s) = Ps

(
Γ(g)−1/2

(
Γ2(g)− ρΓ(g)− Γ(Γ(g))

4Γ(g)

))
.

We want to show that α′(s) ≥ ρα(s) and then complete the proof via Grönwall. It
suffices to show that

Γ2(g) ≥ ρΓ(g) +
Γ(Γ(g))

4Γ(g)
,

which will be addressed in the next Lemma.

Lemma 7. If (Pt) is a diffusion satisfying CD(ρ,∞) then

Γ2(f) ≥ ρΓ(f) +
Γ(Γ(f))

4Γ(f)
,

for all f .

Proof. TODO

4.5 Log-Sobolev inequality for a diffusion

We are ready to prove the log-Sobolev inequality for a diffusion.

Theorem 4.5.1. If (Pt) is a diffusion satisfying CD(ρ,∞) for some ρ > 0 and has
an ergodic stationary measure µ. Then µ satisfies the following logarithmic Sobolev
inequality, for any positive f ,

Entµ(f) ≤
1

2ρ

∫
E

Γ(f)

f
dµ.

Remark 6. By the diffusion property Γ(f) = 4fΓ(
√
f) = fΓ(f, log f). So the right-

hand side in the log-Sobolev inequality can be written as∫
E

Γ(f)

f
dµ = E(f, log f) = 4E(

√
f).

Being able to interchange these three expressions is really a blessing of having a diffu-
sion! One might find it difficult to do the same for (Pt) on a discrete space.
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Corollary 2. Let µ be a probability measure on Rn and µ = e−V . If ∇2V ⪰ ρIn for
some ρ > 0, then µ satifies the following log-Sobolev inequality, for any positive f , we
have

Entµ(f) ≤
1

2ρ

∫
Rn

|∇f |2

f
dµ.

The corollary follows directly from Theorem 4.5.1 using Langevin semigroup which
has Γ(f) = |∇f |2 and Lemma 4.

Proof of Theorem 4.5.1. We have, for g = Pt−sf

β(s) = Ps(g log g)

β′(s) = Ps (Γ(g)/g) .

We upper bound β′(s) as follows

Γ(g)

g
=

Γ(Pt−sf)

Pt−sf
(i)

≤ e−2ρ(t−s)Pt−s(
√
Γf)2

Pt−sf
(ii)

≤ e−2ρ(t−s)Pt−s

(
Γf

f

)
.

(i) follows from CD(ρ,∞) and strong commutation in Lemma 6. (ii) follows from
Cauchy-Schwarz inequality. Therefore,

β′(s) ≤ e−2ρ(t−s)Pt

(
Γf

f

)
.

Integrating the above from 0 to t, we obtain

Pt(f log f)− (Ptf) log(Ptf) ≤
1− e−2ρt

2ρ
Pt

(
Γf

f

)
.

Letting t → ∞ and using ergodicity, we conclude.

Just as we have seen for the Gaussian LSI, for a diffusion

• LSI is equivalent to an exponential decay of entropy. TODO

• LSI is equivalent to hypercontractivity. TODO
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