401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 5 — Brascamp-Lieb inequality and KLS
Lecturer: Yuansi Chen Week 10-12 Spring 2025

Key concepts:

e Brascamp-Lieb inequality

[soperimetric inequality

Relating isoperimetric inequality and Poincaré inequality

[soperimetric inequality via localization lemma
e [soperimetric inequality via stochastic localization

The main conceptual takeaway from the Bakry—Emcry criterion and Gamma cal-
culus is that in Euclidean space, having V2V = pl, is sufficient for g oc e=V to have
dimension independent Poincaré inequality. We look for forms of Poincaré inequality
which requires weaker assumptions than V2V = pl,.

5.1 Brascamp-Lieb inequality

Theorem 5.1.1 (Brascamp-Lieb inequality [31.02], also known as Hessian Poincaré).
For a probability measure du = e~V dx on R™ for which the smooth potential V : R® — R
18 strictly convex, then

Va, (/) < [ (V) 9598 d

n

for every smooth compactly supported function f on R™.

Remark 1. In this Fuclidean context, for the Langevin semigroup, we know from the
last lecture that the curvature dimension condition CD(p,o00) is equivalent to V*V =
pl,. Hence, if p > 0, we have

((vv) "' v5.9r) < %lVfIQ.

So the Brascamp-Lieb inequality improves the Poincaré inequality in Theorem 4.2.1.
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The original proof in | ] is via induction on n starting from the special case

n = 1. Here we present a proof via semigroups, the same idea was presented in Theorem
4.9.1 of | ).

Proof of Theorem 5.1.1. The proof is only sketched. Let L = A — VV -V be the
Langevin semigroup. W..o.g, we may assume E,f = 0. First, we assume that a
(sufficiently regular) solution to the following Poisson-type equation exists

Then we have

_ / (V*V) 2 V£ (V2V)E V).

(i) follows from Lg = f, (ii) follows from integration by parts. Applying Cauchy-
Schwarz inequality, we have

/deu < </<(v2v) Vg,Vg) cm)é (/<(v2v)‘1 v, Vf})%. (5.1)

From Lemma 3 in the last lecture (Gamma-calculus for Langevin semigroup), we know
that

Pa(g) = trace ((V29)°) + (V2V'Vg, Vg) > (V2V'Vg, V).
It remains to relate I's(g) back to [ f2du. Because [ Lg® = 0, we have (recall I'(g) =

5 (Lg* —2gLg))
/F(g)du = —/ngdu-

Then (recall 'y(g) = 5 (LI'(g) — 2I'(g, Lg))), we have

/ /r 9.Lg)d
/

gL?g + (Lg)*du
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Plugging the bound (V*VVg,Vg) < T's(g) = [ f?du into Eq. (5.1), we obtain

/ fdp < / (V) VLV,

which is what we wanted. Finally, we show that a solution to Lg = f can be constructed
via semigroups. Define

t
w () = —/ P, f(x)ds.
0
By definition, u, satisfies
Opur = — DB, f.

Then

t
Lu, = L/ —P,fds
0

= /t—LPsfds
0
= _[Psf]g

=f-nhf
Now P, is ergodic with respect to p and E, f = 0, letting ¢ — oo, we obtain P, f = 0.

Hence, we conclude that u,, (after checking reguarlity) constitutes a solution to the
equation Lu = f. n

5.2 Isoperimetric inequality

Give a probability measure 1 on R”. Fix the distance d(z,y) = ||z — yl|, to be the
Euclidean distance. In general, the isoperimetric problem for 4 is asking the question:
among all sets of a given measure, which sets have the minimal perimeter?

To define the perimeter precisely, we adopt the exterior Minkowski content.

exterior Minkowski content as a boundary measure For every measurable sub-
set A, we let

pi(A) =lim inf piAr) = pu4)

r—0t r ’

where A, = {z € R | d(x, A) < r} is the r-neighborhood of A C R".
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Isoperimetric inequality We say a measure p satisfies an isoperimetric inequality
with constant C' if

min {u(A), 1 — pu(A)} < Cp(A) (5.2)

for every measurable set A. The smallest C' such that the above holds is called the
isoperimetric constant of x1, denoted ,,.

Relating Poincaré inequality with isoperimetric inequality Recall that we say
w satisfies a Poincaré inequality with constant Cp(pu) if

Varu(f) < CP(M)EM ‘Vﬂz )

for all f such that both sides are well defined. Then we have the following theorem
relating Poincaré inequality with isoperimetric inequality.

Theorem 5.2.1. We have

Cp(p) < 497

Remark that the converse of Theorem 5.2.1 is not true in general, even if we al-
low for additional universal constant factors. However, under the assumption that p
is log-concave, for example, Buser’s inequality provides the converse up to universal
constants | |.

To prove the above result, we need the co-area formula (see e.g. Lemma 3.2
in | |), which is essentially a way to rewrite an integral.

Lemma 1 (Co-area formula). For any Lipschitz function on R™, we have
[z [ e v 50> e

In other words, we rewrite the integral as an integral over a single parameter ¢ which
specifies the level sets of f. See Lemma 3.2 in | | for a proof. Remark equality also
holds under some additional properties of u, such as nonsingularity.

Using the co-area formula, we can write the isoperimetric inequality (5.2) as a L!-
variant of Poincaré inequality.

Lemma 2. The following two statements are equivalent

(a) w satisfies the isoperimetric inequality in Eq. (5.2)
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(b) For all f,

min/|f—cl dn < 0/|Vf|du,

ceR

where |V f| is defined as

— i If(@) = f)l
IVf(x)|:= hmd(;;;gm Aoy

Proof of Lemma 2. (a) == (b) : w.lo.g, we may assume median(f) = 0, that is
P.(f >0) > 1 and P,(f <0) > 5. Applying co-area formula in Lemma 1, we have

[wsanz [ ma

Q

91 / T min {u({f > 1)1 — p({f > 1))} de

@) %/O Oolu({f>t})dt+/ p({f < t})dt

1
==FE|f|.
ZEI/]
(i) applies isoperimetric inequality. (ii) follows because median(f) = 0. Finally,

mineer [ |f — ¢/ du is achieved at the median of f.
(b) = (a) : take f, to be a sequence of soft indicators of a set A as follows

fn = (1 - ld(m,Aen)) ;
n

€n

Take ¢, = %, then

MR ),
and
fn —nooo 1a.
Taking limsup of (b), we obtain (a). O

Proof of Theorem 5.2.1. We start with an isoperimetric inequality, and we want to
prove a Poincaré inequality. We can write

f=F+ 1
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where fi = f-150 and f_ = f-15.0. We deal with the positive and the negative
parts separately.
Applying isoperimetric inequality to f,, we obtain

[ fraw< o, [190)]du
:2¢u/f+yvf+’dﬂ
< 2, ( / fidu>2(lvf+!2) ,

where the last inequality follows from Cauchy-Schwarz. Rearranging the above, we
obtain taht

=

[ fraw< 1t [ 19471000
Similar we obtain that
/deu < 41#3/ IV FI* 1y <odp.

Summing the two equations above, we obtain the desired Poincaré inequality. O

5.3 Diameter isoperimetric inequality

Strictly positive curvature lower bound is not necessary for proving a dimension-free
isoperimetric inequality. Here we show that log-concavity and diameter upper bound
suffice.

log-concave We say a measure p on R” is log-concave, if
pAz + (1= Ny) > p(z) u(y)' Ve, y e R*, A € [0,1].
For a compact set K C R", define its diameter diam(K) = max {d(z,y) | z,y € K}.

Theorem 5.3.1 (Diameter isoperimetric inequality). Suppose p is a log-concave prob-
ability measure supported on a compact conver set K, such that diam(K) < D with
D > 0. Then for any partition of R™ into measurable sets Si,Sa, S35, we have

d(Sq, Ss)

2 :
m(S3) > i) min {m(S1),7(S2)} .
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The convex set version of it was proved in | ], see also | ]. Tts proof relies
on the following convex localization lemma | |. We adopt the simplified notation
in [ ].

Lemma 3 (Convex localization lemma). Let g,h : R — R be lower semi-continuous
integrable functions such that

/ g(z)dz >0, and / h(z)dz > 0.

Then there ezists two points a,b € R™ and a linear function ¢ : [0,1] — R, such that
1 1
/ (6" g((1 = t)a + thdt > 0 and / (O h((1 = ta + th)dt > 0.
0 0

Essentially, the lemma allows us to reduce the proof of two joint integral inequal-
ity in n-dimensional space to the proof of two joint integral inequality in 1-dimension.
The main proof idea is to reduce the dimension of the space where we integrate itera-
tively, while keeping the two integrals to hold jointly, until the space becomes a needle.
See | ].

Assuming Lemma 3, we can reduce the proof of isoperimetric inequality in n-
dimensional space to the proof of an isoperimetric inequality in 1-dimension for a
log-concave measure supported on a set with diameter D. Note that the operations
in Lemma 3 never expand the diameter D. See | | for a complete proof.

5.4 KLS conjecture and stochastic localization

If we assumes that the covariance of a logconcave measure p is bounded in the place
of diameter bound, then we may prove a slightly better isoperimetric inequality. This

is capture by the following Kannn-Lovész-Simonovits conjecture | | (see also the
survey | 1.
Conjecture 1 (Kannn-Lovdsz-Simonovits | ). There exists a universal constant

c > 0, such that for any log-concave probability measure p on R™ which is isotropic
(Exu[X] =0,Covx.,(X) =1,), its isoperimetric constant satisfies

Y, <c.

The general problem is still open. The current best bound is cy/logn due to
Klartag | ].

Theorem 5.4.1 (Klartag | ). There exists a universal constant ¢ > 0, such
that for any log-concave probability measure p1 on R™ which is isotropic (Ex.,[X] =
0,Covxu(X) =1,), its isoperimetric constant satisfies

b < e/
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Remark 2. 1. According to the diameter isoperimetric inequality in Theorem 5.3.1,
we have 1, = cD if p is supported on a convex set of diameter D.

e The convex localization based proof can be extended to the case Covy.,(X) =
L, then the covariance of the 1-dimensional measure < /n. We obtained
a bound v, < cy/n. Intuitively, for logconcave measure with covariance I,
Chebyshev’s inequality also implies that the mass should concentrate inside
a ball of radius \/n.

e The convex localization based proof can also be extended to the case where
is a-strongly logconcave, that is, —V?log(p) = al,.

2. For a general measure with Ex.,[X] = 0,Covx.,(X) = A, after rescaling, the
congjecture states that

b < c|All,-

The set of logconcave measures contains all uniform measure on all kinds of convex
sets. Without knowing the exact form of these convex sets, we don’t have a lot of tools
to prove an isoperimetric inequality in high dimension. At a high level, the main proof
idea is reduce to the problem to a much simpler problem that we are familiar with.

e In diameter isoperimetric inequality and convex localization lemma, the idea is
to reduce the high dimension problem to many 1-dimensional problems.

e Here, we use Eldan’s stochastic localization to reduce the problem to many
Gaussian-like strongly logconcave isoperimetric problems.

5.4.1 Eldan’s stochastic localization

TODO
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