
401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 5 – Brascamp-Lieb inequality and KLS
Lecturer: Yuansi Chen Week 10-12 Spring 2025

Key concepts:

• Brascamp-Lieb inequality

• Isoperimetric inequality

• Relating isoperimetric inequality and Poincaré inequality

• Isoperimetric inequality via localization lemma

• Isoperimetric inequality via stochastic localization

The main conceptual takeaway from the Bakry-Émery criterion and Gamma cal-
culus is that in Euclidean space, having ∇2V ⪰ ρIn is sufficient for µ ∝ e−V to have
dimension independent Poincaré inequality. We look for forms of Poincaré inequality
which requires weaker assumptions than ∇2V ⪰ ρIn.

5.1 Brascamp-Lieb inequality

Theorem 5.1.1 (Brascamp-Lieb inequality [BL02], also known as Hessian Poincaré).
For a probability measure dµ = e−V dx on Rn for which the smooth potential V : Rn → R
is strictly convex, then

Varµ(f) ≤
∫
Rn

〈
(∇2V )−1∇f,∇f

〉
dµ,

for every smooth compactly supported function f on Rn.

Remark 1. In this Euclidean context, for the Langevin semigroup, we know from the
last lecture that the curvature dimension condition CD(ρ,∞) is equivalent to ∇2V ⪰
ρIn. Hence, if ρ > 0, we have〈(

∇2V
)−1∇f,∇f

〉
≤ 1

ρ
|∇f |2 .

So the Brascamp-Lieb inequality improves the Poincaré inequality in Theorem 4.2.1.

5-1



401-3382-25L Lecture 5 Spring 2025

The original proof in [BL02] is via induction on n starting from the special case
n = 1. Here we present a proof via semigroups, the same idea was presented in Theorem
4.9.1 of [BGL+14].

Proof of Theorem 5.1.1. The proof is only sketched. Let L = ∆ − ∇V · ∇ be the
Langevin semigroup. W.l.o.g, we may assume Eµf = 0. First, we assume that a
(sufficiently regular) solution to the following Poisson-type equation exists

Lg = f.

Then we have

Eµ(f
2) =

∫
f 2dµ

(i)
=

∫
fLgdµ

(ii)
=

∫
⟨∇f,∇g⟩

=

∫ 〈(
∇2V

)− 1
2 ∇f,

(
∇2V

) 1
2 ∇g

〉
,

(i) follows from Lg = f , (ii) follows from integration by parts. Applying Cauchy-
Schwarz inequality, we have∫

f 2dµ ≤
(∫ 〈(

∇2V
)
∇g,∇g

〉
dµ

) 1
2
(∫ 〈(

∇2V
)−1∇f,∇f

〉) 1
2

. (5.1)

From Lemma 3 in the last lecture (Gamma-calculus for Langevin semigroup), we know
that

Γ2(g) = trace
((

∇2g
)2)

+
〈
∇2V∇g,∇g

〉
≥

〈
∇2V∇g,∇g

〉
.

It remains to relate Γ2(g) back to
∫
f 2dµ. Because

∫
Lg2 = 0, we have (recall Γ(g) =

1
2
(Lg2 − 2gLg)) ∫

Γ(g)dµ = −
∫
gLgdµ.

Then (recall Γ2(g) =
1
2
(LΓ(g)− 2Γ(g, Lg))), we have∫

Γ2(g)dµ = −
∫

Γ(g, Lg)dµ

=
1

2

∫
gL2g + (Lg)2dµ

=

∫
(Lg)2dµ

=

∫
f 2dµ.
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Plugging the bound ⟨∇2V∇g,∇g⟩ ≤ Γ2(g) =
∫
f 2dµ into Eq. (5.1), we obtain∫

f 2dµ ≤
∫ 〈(

∇2V
)−1∇f,∇f

〉
,

which is what we wanted. Finally, we show that a solution to Lg = f can be constructed
via semigroups. Define

ut(x) := −
∫ t

0

Psf(x)ds.

By definition, ut satisfies

∂tut = −Ptf.

Then

Lut = L

∫ t

0

−Psfds

=

∫ t

0

−LPsfds

= −[Psf ]
t
0

= f − Ptf.

Now Pt is ergodic with respect to µ and Eµf = 0, letting t → ∞, we obtain Ptf = 0.
Hence, we conclude that u∞ (after checking reguarlity) constitutes a solution to the
equation Lu = f .

5.2 Isoperimetric inequality

Give a probability measure µ on Rn. Fix the distance d(x, y) = ∥x− y∥2 to be the
Euclidean distance. In general, the isoperimetric problem for µ is asking the question:
among all sets of a given measure, which sets have the minimal perimeter?

To define the perimeter precisely, we adopt the exterior Minkowski content.

exterior Minkowski content as a boundary measure For every measurable sub-
set A, we let

µ+(A) = lim inf
r→0+

µ(Ar)− µ(A)

r
,

where Ar = {x ∈ R | d(x,A) ≤ r} is the r-neighborhood of A ⊂ Rn.
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Isoperimetric inequality We say a measure µ satisfies an isoperimetric inequality
with constant C if

min {µ(A), 1− µ(A)} ≤ Cµ+(A) (5.2)

for every measurable set A. The smallest C such that the above holds is called the
isoperimetric constant of µ, denoted ψµ.

Relating Poincaré inequality with isoperimetric inequality Recall that we say
µ satisfies a Poincaré inequality with constant CP (µ) if

Varµ(f) ≤ CP (µ)Eµ |∇f |2 ,

for all f such that both sides are well defined. Then we have the following theorem
relating Poincaré inequality with isoperimetric inequality.

Theorem 5.2.1. We have

CP (µ) ≤ 4ψ2
µ.

Remark that the converse of Theorem 5.2.1 is not true in general, even if we al-
low for additional universal constant factors. However, under the assumption that µ
is log-concave, for example, Buser’s inequality provides the converse up to universal
constants [Bus82].

To prove the above result, we need the co-area formula (see e.g. Lemma 3.2
in [BH97]), which is essentially a way to rewrite an integral.

Lemma 1 (Co-area formula). For any Lipschitz function on Rn, we have∫
|∇f | dµ ≥

∫ ∞

−∞
µ+ ({x ∈ Rn | f(x) > t}) dt.

In other words, we rewrite the integral as an integral over a single parameter t which
specifies the level sets of f . See Lemma 3.2 in [BH97] for a proof. Remark equality also
holds under some additional properties of µ, such as nonsingularity.

Using the co-area formula, we can write the isoperimetric inequality (5.2) as a L1-
variant of Poincaré inequality.

Lemma 2. The following two statements are equivalent

(a) µ satisfies the isoperimetric inequality in Eq. (5.2)
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(b) For all f ,

min
c∈R

∫
|f − c| dµ ≤ C

∫
|∇f | dµ,

where |∇f | is defined as

|∇f(x)| := lim sup
d(x,y)→0+

|f(x)− f(y)|
d(x, y)

.

Proof of Lemma 2. (a) =⇒ (b) : w.l.o.g, we may assume median(f) = 0, that is
Pµ(f ≥ 0) ≥ 1

2
and Pµ(f ≤ 0) ≥ 1

2
. Applying co-area formula in Lemma 1, we have∫

|∇f | dµ ≥
∫ +∞

−∞
µ+ ({f > t}) dt

(i)

≥ 1

C

∫ +∞

−∞
min {µ({f > t}), 1− µ({f > t})} dt

(ii)
=

1

C

∫ +∞

0

µ({f > t})dt+
∫ 0

−∞
µ({f ≤ t})dt

=
1

C
E |f | .

(i) applies isoperimetric inequality. (ii) follows because median(f) = 0. Finally,
minc∈R

∫
|f − c| dµ is achieved at the median of f .

(b) =⇒ (a) : take fn to be a sequence of soft indicators of a set A as follows

fn =

(
1− 1

ϵn
d(x,Aϵn)

)
+

,

Take ϵn = 1
n
, then

µ(Aϵn \ A)
ϵn

→ µ+(A),

and

fn →n→∞ 1A.

Taking limsup of (b), we obtain (a).

Proof of Theorem 5.2.1. We start with an isoperimetric inequality, and we want to
prove a Poincaré inequality. We can write

f = f+ + f−,
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where f+ = f · 1f≥0 and f− = f · 1f<0. We deal with the positive and the negative
parts separately.

Applying isoperimetric inequality to f+, we obtain∫
f 2
+dµ ≤ ψµ

∫ ∣∣∇(f 2
+)
∣∣ dµ

= 2ψµ

∫
f+ |∇f+| dµ

≤ 2ψµ

(∫
f 2
+dµ

) 1
2 (

|∇f+|2
) 1

2 ,

where the last inequality follows from Cauchy-Schwarz. Rearranging the above, we
obtain taht ∫

f 2
+dµ ≤ 4ψ2

µ

∫
|∇f |2 1f>0dµ.

Similar we obtain that ∫
f 2
−dµ ≤ 4ψ2

µ

∫
|∇f |2 1f<0dµ.

Summing the two equations above, we obtain the desired Poincaré inequality.

5.3 Diameter isoperimetric inequality

Strictly positive curvature lower bound is not necessary for proving a dimension-free
isoperimetric inequality. Here we show that log-concavity and diameter upper bound
suffice.

log-concave We say a measure µ on Rn is log-concave, if

µ(λx+ (1− λ)y) ≥ µ(x)λµ(y)1−λ,∀x, y ∈ Rn, λ ∈ [0, 1].

For a compact set K ⊆ Rn, define its diameter diam(K) = max {d(x, y) | x, y ∈ K}.

Theorem 5.3.1 (Diameter isoperimetric inequality). Suppose µ is a log-concave prob-
ability measure supported on a compact convex set K, such that diam(K) ≤ D with
D > 0. Then for any partition of Rn into measurable sets S1, S2, S3, we have

π(S3) ≥
2d(S1, S2)

D
min {π(S1), π(S2)} .
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The convex set version of it was proved in [DF91], see also [KLS95]. Its proof relies
on the following convex localization lemma [LS93]. We adopt the simplified notation
in [Vem05].

Lemma 3 (Convex localization lemma). Let g, h : Rn → R be lower semi-continuous
integrable functions such that∫

Rn

g(x)dx > 0, and

∫
Rn

h(x)dx > 0.

Then there exists two points a, b ∈ Rn and a linear function ℓ : [0, 1] → R+ such that∫ 1

0

ℓ(t)n−1g((1− t)a+ tb)dt > 0 and

∫ 1

0

ℓ(t)n−1h((1− t)a+ tb)dt > 0.

Essentially, the lemma allows us to reduce the proof of two joint integral inequal-
ity in n-dimensional space to the proof of two joint integral inequality in 1-dimension.
The main proof idea is to reduce the dimension of the space where we integrate itera-
tively, while keeping the two integrals to hold jointly, until the space becomes a needle.
See [Vem05].

Assuming Lemma 3, we can reduce the proof of isoperimetric inequality in n-
dimensional space to the proof of an isoperimetric inequality in 1-dimension for a
log-concave measure supported on a set with diameter D. Note that the operations
in Lemma 3 never expand the diameter D. See [Vem05] for a complete proof.

5.4 KLS conjecture and stochastic localization

If we assumes that the covariance of a logconcave measure µ is bounded in the place
of diameter bound, then we may prove a slightly better isoperimetric inequality. This
is capture by the following Kannn-Lovász-Simonovits conjecture [KLS95] (see also the
survey [LV18]).

Conjecture 1 (Kannn-Lovász-Simonovits [KLS95]). There exists a universal constant
c > 0, such that for any log-concave probability measure µ on Rn which is isotropic
(EX∼µ[X] = 0,CovX∼µ(X) = In), its isoperimetric constant satisfies

ψµ ≤ c.

The general problem is still open. The current best bound is c
√
log n due to

Klartag [Kla23].

Theorem 5.4.1 (Klartag [Kla23]). There exists a universal constant c > 0, such
that for any log-concave probability measure µ on Rn which is isotropic (EX∼µ[X] =
0,CovX∼µ(X) = In), its isoperimetric constant satisfies

ψµ ≤ c
√
n.
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Remark 2. 1. According to the diameter isoperimetric inequality in Theorem 5.3.1,
we have ψµ = cD if µ is supported on a convex set of diameter D.

• The convex localization based proof can be extended to the case CovX∼µ(X) =
In, then the covariance of the 1-dimensional measure ≤

√
n. We obtained

a bound ψµ ≤ c
√
n. Intuitively, for logconcave measure with covariance In,

Chebyshev’s inequality also implies that the mass should concentrate inside
a ball of radius

√
n.

• The convex localization based proof can also be extended to the case where µ
is α-strongly logconcave, that is, −∇2 log(µ) ⪰ αIn.

2. For a general measure with EX∼µ[X] = 0,CovX∼µ(X) = A, after rescaling, the
conjecture states that

ψµ ≤ c ∥A∥2 .

The set of logconcave measures contains all uniform measure on all kinds of convex
sets. Without knowing the exact form of these convex sets, we don’t have a lot of tools
to prove an isoperimetric inequality in high dimension. At a high level, the main proof
idea is reduce to the problem to a much simpler problem that we are familiar with.

• In diameter isoperimetric inequality and convex localization lemma, the idea is
to reduce the high dimension problem to many 1-dimensional problems.

• Here, we use Eldan’s stochastic localization to reduce the problem to many
Gaussian-like strongly logconcave isoperimetric problems.

5.4.1 Eldan’s stochastic localization

TODO
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