401-3382-25L: Log-Sobolev Inequalities and Markov Semigroups

Lecture 5 – Brascamp-Lieb inequality and KLS Lecturer: Yuansi Chen Week 10-12 Spring 2025

Key concepts:

- Brascamp-Lieb inequality
- Isoperimetric inequality
- Relating isoperimetric inequality and Poincaré inequality
- Isoperimetric inequality via localization lemma
- Isoperimetric inequality via stochastic localization

The main conceptual takeaway from the Bakry-Émery criterion and Gamma calculus is that in Euclidean space, having $\nabla^2 V \succeq \rho \mathbb{I}_n$ is sufficient for $\mu \propto e^{-V}$ to have dimension independent Poincaré inequality. We look for forms of Poincaré inequality which requires weaker assumptions than $\nabla^2 V \succeq \rho \mathbb{I}_n$.

5.1 Brascamp-Lieb inequality

Theorem 5.1.1 (Brascamp-Lieb inequality [BL02], also known as Hessian Poincaré). For a probability measure $d\mu = e^{-V} dx$ on \mathbb{R}^n for which the smooth potential $V : \mathbb{R}^n \to \mathbb{R}$ is strictly convex, then

$$\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^n} \left\langle (\nabla^2 V)^{-1} \nabla f, \nabla f \right\rangle d\mu,$$

for every smooth compactly supported function f on \mathbb{R}^n .

Remark 1. In this Euclidean context, for the Langevin semigroup, we know from the last lecture that the curvature dimension condition $CD(\rho, \infty)$ is equivalent to $\nabla^2 V \succeq \rho \mathbb{I}_n$. Hence, if $\rho > 0$, we have

$$\left\langle \left(\nabla^2 V \right)^{-1} \nabla f, \nabla f \right\rangle \leq \frac{1}{\rho} \left| \nabla f \right|^2.$$

So the Brascamp-Lieb inequality improves the Poincaré inequality in Theorem 4.2.1.

The original proof in [BL02] is via induction on n starting from the special case n = 1. Here we present a proof via semigroups, the same idea was presented in Theorem 4.9.1 of [BGL⁺14].

Proof of Theorem 5.1.1. The proof is only sketched. Let $L = \Delta - \nabla V \cdot \nabla$ be the Langevin semigroup. W.l.o.g, we may assume $\mathbb{E}_{\mu}f = 0$. First, we assume that a (sufficiently regular) solution to the following Poisson-type equation exists

$$Lg = f.$$

Then we have

$$\mathbb{E}_{\mu}(f^{2}) = \int f^{2}d\mu$$

$$\stackrel{(i)}{=} \int fLgd\mu$$

$$\stackrel{(ii)}{=} \int \langle \nabla f, \nabla g \rangle$$

$$= \int \left\langle \left(\nabla^{2} V \right)^{-\frac{1}{2}} \nabla f, \left(\nabla^{2} V \right)^{\frac{1}{2}} \nabla g \right\rangle$$

(i) follows from Lg = f, (ii) follows from integration by parts. Applying Cauchy-Schwarz inequality, we have

$$\int f^2 d\mu \le \left(\int \left\langle \left(\nabla^2 V \right) \nabla g, \nabla g \right\rangle d\mu \right)^{\frac{1}{2}} \left(\int \left\langle \left(\nabla^2 V \right)^{-1} \nabla f, \nabla f \right\rangle \right)^{\frac{1}{2}}.$$
 (5.1)

,

From Lemma 3 in the last lecture (Gamma-calculus for Langevin semigroup), we know that

$$\Gamma_2(g) = \operatorname{trace}\left(\left(\nabla^2 g\right)^2\right) + \left\langle \nabla^2 V \nabla g, \nabla g \right\rangle \ge \left\langle \nabla^2 V \nabla g, \nabla g \right\rangle.$$

It remains to relate $\Gamma_2(g)$ back to $\int f^2 d\mu$. Because $\int Lg^2 = 0$, we have (recall $\Gamma(g) = \frac{1}{2}(Lg^2 - 2gLg)$)

$$\int \Gamma(g)d\mu = -\int gLgd\mu.$$

Then (recall $\Gamma_2(g) = \frac{1}{2} (L\Gamma(g) - 2\Gamma(g, Lg)))$, we have

$$\int \Gamma_2(g) d\mu = -\int \Gamma(g, Lg) d\mu$$
$$= \frac{1}{2} \int g L^2 g + (Lg)^2 d\mu$$
$$= \int (Lg)^2 d\mu$$
$$= \int f^2 d\mu.$$

Plugging the bound $\langle \nabla^2 V \nabla g, \nabla g \rangle \leq \Gamma_2(g) = \int f^2 d\mu$ into Eq. (5.1), we obtain

$$\int f^2 d\mu \leq \int \left\langle \left(\nabla^2 V \right)^{-1} \nabla f, \nabla f \right\rangle,$$

which is what we wanted. Finally, we show that a solution to Lg = f can be constructed via semigroups. Define

$$u_t(x) := -\int_0^t P_s f(x) ds$$

By definition, u_t satisfies

$$\partial_t u_t = -P_t f.$$

Then

$$Lu_t = L \int_0^t -P_s f ds$$

=
$$\int_0^t -LP_s f ds$$

=
$$-[P_s f]_0^t$$

=
$$f - P_t f.$$

Now P_t is ergodic with respect to μ and $\mathbb{E}_{\mu}f = 0$, letting $t \to \infty$, we obtain $P_t f = 0$. Hence, we conclude that u_{∞} (after checking reguarlity) constitutes a solution to the equation Lu = f.

5.2 Isoperimetric inequality

Give a probability measure μ on \mathbb{R}^n . Fix the distance $\mathbf{d}(x, y) = ||x - y||_2$ to be the Euclidean distance. In general, the isoperimetric problem for μ is asking the question: among all sets of a given measure, which sets have the minimal perimeter?

To define the perimeter precisely, we adopt the exterior Minkowski content.

exterior Minkowski content as a boundary measure For every measurable subset A, we let

$$\mu_{+}(A) = \lim \inf_{r \to 0^{+}} \frac{\mu(A_{r}) - \mu(A)}{r},$$

where $A_r = \{x \in \mathbb{R} \mid \mathbf{d}(x, A) \leq r\}$ is the *r*-neighborhood of $A \subset \mathbb{R}^n$.

Isoperimetric inequality We say a measure μ satisfies an *isoperimetric inequality* with constant C if

$$\min\{\mu(A), 1 - \mu(A)\} \le C\mu_+(A) \tag{5.2}$$

for every measurable set A. The smallest C such that the above holds is called the isoperimetric constant of μ , denoted ψ_{μ} .

Relating Poincaré inequality with isoperimetric inequality Recall that we say μ satisfies a Poincaré inequality with constant $C_P(\mu)$ if

$$\operatorname{Var}_{\mu}(f) \leq C_{P}(\mu) \mathbb{E}_{\mu} |\nabla f|^{2},$$

for all f such that both sides are well defined. Then we have the following theorem relating Poincaré inequality with isoperimetric inequality.

Theorem 5.2.1. We have

$$C_P(\mu) \le 4\psi_u^2.$$

Remark that the converse of Theorem 5.2.1 is not true in general, even if we allow for additional universal constant factors. However, under the assumption that μ is log-concave, for example, Buser's inequality provides the converse up to universal constants [Bus82].

To prove the above result, we need the co-area formula (see e.g. Lemma 3.2 in [BH97]), which is essentially a way to rewrite an integral.

Lemma 1 (Co-area formula). For any Lipschitz function on \mathbb{R}^n , we have

$$\int |\nabla f| \, d\mu \ge \int_{-\infty}^{\infty} \mu_+ \left(\{ x \in \mathbb{R}^n \mid f(x) > t \} \right) \, dt.$$

In other words, we rewrite the integral as an integral over a single parameter t which specifies the level sets of f. See Lemma 3.2 in [BH97] for a proof. Remark equality also holds under some additional properties of μ , such as nonsingularity.

Using the co-area formula, we can write the isoperimetric inequality (5.2) as a \mathbb{L}^1 -variant of Poincaré inequality.

Lemma 2. The following two statements are equivalent

(a) μ satisfies the isoperimetric inequality in Eq. (5.2)

(b) For all f,

$$\min_{c \in \mathbb{R}} \int |f - c| \, d\mu \le C \int |\nabla f| \, d\mu,$$

where $|\nabla f|$ is defined as

$$|\nabla f(x)| := \lim \sup_{\mathbf{d}(x,y) \to 0^+} \frac{|f(x) - f(y)|}{\mathbf{d}(x,y)}.$$

Proof of Lemma 2. (a) \implies (b) : w.l.o.g, we may assume median(f) = 0, that is $\mathbb{P}_{\mu}(f \ge 0) \ge \frac{1}{2}$ and $\mathbb{P}_{\mu}(f \le 0) \ge \frac{1}{2}$. Applying co-area formula in Lemma 1, we have

$$\begin{split} \int |\nabla f| \, d\mu &\geq \int_{-\infty}^{+\infty} \mu_+ \left(\{f > t\}\right) dt \\ &\stackrel{(i)}{\geq} \frac{1}{C} \int_{-\infty}^{+\infty} \min\left\{\mu(\{f > t\}), 1 - \mu(\{f > t\})\right\} dt \\ &\stackrel{(ii)}{=} \frac{1}{C} \int_{0}^{+\infty} \mu(\{f > t\}) dt + \int_{-\infty}^{0} \mu(\{f \le t\}) dt \\ &= \frac{1}{C} \mathbb{E} \left|f\right|. \end{split}$$

(i) applies isoperimetric inequality. (ii) follows because $\operatorname{median}(f) = 0$. Finally, $\min_{c \in \mathbb{R}} \int |f - c| d\mu$ is achieved at the median of f.

 $(b) \implies (a)$: take f_n to be a sequence of soft indicators of a set A as follows

$$f_n = \left(1 - \frac{1}{\epsilon_n} \mathbf{d}(x, A_{\epsilon_n})\right)_+,$$

Take $\epsilon_n = \frac{1}{n}$, then

$$\frac{\mu(A_{\epsilon_n} \setminus A)}{\epsilon_n} \to \mu_+(A),$$

and

 $f_n \to_{n\to\infty} \mathbf{1}_A.$

Taking limsup of (b), we obtain (a).

Proof of Theorem 5.2.1. We start with an isoperimetric inequality, and we want to prove a Poincaré inequality. We can write

$$f = f_+ + f_-,$$

where $f_+ = f \cdot \mathbf{1}_{f \ge 0}$ and $f_- = f \cdot \mathbf{1}_{f < 0}$. We deal with the positive and the negative parts separately.

Applying isoperimetric inequality to f_+ , we obtain

$$\int f_{+}^{2} d\mu \leq \psi_{\mu} \int \left| \nabla(f_{+}^{2}) \right| d\mu$$
$$= 2\psi_{\mu} \int f_{+} \left| \nabla f_{+} \right| d\mu$$
$$\leq 2\psi_{\mu} \left(\int f_{+}^{2} d\mu \right)^{\frac{1}{2}} \left(\left| \nabla f_{+} \right|^{2} \right)^{\frac{1}{2}},$$

where the last inequality follows from Cauchy-Schwarz. Rearranging the above, we obtain taht

$$\int f_+^2 d\mu \le 4\psi_\mu^2 \int |\nabla f|^2 \,\mathbf{1}_{f>0} d\mu.$$

Similar we obtain that

$$\int f_-^2 d\mu \le 4\psi_\mu^2 \int |\nabla f|^2 \,\mathbf{1}_{f<0} d\mu.$$

Summing the two equations above, we obtain the desired Poincaré inequality.

5.3 Diameter isoperimetric inequality

Strictly positive curvature lower bound is not necessary for proving a dimension-free isoperimetric inequality. Here we show that log-concavity and diameter upper bound suffice.

log-concave We say a measure μ on \mathbb{R}^n is log-concave, if

$$\mu(\lambda x + (1 - \lambda)y) \ge \mu(x)^{\lambda} \mu(y)^{1 - \lambda}, \forall x, y \in \mathbb{R}^n, \lambda \in [0, 1].$$

For a compact set $K \subseteq \mathbb{R}^n$, define its diameter diam $(K) = \max \{ \mathbf{d}(x, y) \mid x, y \in K \}$.

Theorem 5.3.1 (Diameter isoperimetric inequality). Suppose μ is a log-concave probability measure supported on a compact convex set K, such that $diam(K) \leq D$ with D > 0. Then for any partition of \mathbb{R}^n into measurable sets S_1, S_2, S_3 , we have

$$\pi(S_3) \ge \frac{2\mathbf{d}(S_1, S_2)}{D} \min\left\{\pi(S_1), \pi(S_2)\right\}.$$

The convex set version of it was proved in [DF91], see also [KLS95]. Its proof relies on the following convex localization lemma [LS93]. We adopt the simplified notation in [Vem05].

Lemma 3 (Convex localization lemma). Let $g, h : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous integrable functions such that

$$\int_{\mathbb{R}^n} g(x) dx > 0, \text{ and } \int_{\mathbb{R}^n} h(x) dx > 0.$$

Then there exists two points $a, b \in \mathbb{R}^n$ and a linear function $\ell : [0, 1] \to \mathbb{R}_+$ such that

$$\int_0^1 \ell(t)^{n-1} g((1-t)a + tb) dt > 0 \text{ and } \int_0^1 \ell(t)^{n-1} h((1-t)a + tb) dt > 0.$$

Essentially, the lemma allows us to reduce the proof of two joint integral inequality in n-dimensional space to the proof of two joint integral inequality in 1-dimension. The main proof idea is to reduce the dimension of the space where we integrate iteratively, while keeping the two integrals to hold jointly, until the space becomes a needle. See [Vem05].

Assuming Lemma 3, we can reduce the proof of isoperimetric inequality in *n*-dimensional space to the proof of an isoperimetric inequality in 1-dimension for a log-concave measure supported on a set with diameter D. Note that the operations in Lemma 3 never expand the diameter D. See [Vem05] for a complete proof.

5.4 KLS conjecture and stochastic localization

If we assumes that the covariance of a logconcave measure μ is bounded in the place of diameter bound, then we may prove a slightly better isoperimetric inequality. This is capture by the following Kannn-Lovász-Simonovits conjecture [KLS95] (see also the survey [LV18]).

Conjecture 1 (Kannn-Lovász-Simonovits [KLS95]). There exists a universal constant c > 0, such that for any log-concave probability measure μ on \mathbb{R}^n which is isotropic $(\mathbb{E}_{X \sim \mu}[X] = 0, \operatorname{Cov}_{X \sim \mu}(X) = \mathbb{I}_n)$, its isoperimetric constant satisfies

$$\psi_{\mu} \leq c.$$

The general problem is still open. The current best bound is $c\sqrt{\log n}$ due to Klartag [Kla23].

Theorem 5.4.1 (Klartag [Kla23]). There exists a universal constant c > 0, such that for any log-concave probability measure μ on \mathbb{R}^n which is isotropic ($\mathbb{E}_{X \sim \mu}[X] = 0$, $\operatorname{Cov}_{X \sim \mu}(X) = \mathbb{I}_n$), its isoperimetric constant satisfies

$$\psi_{\mu} \leq c\sqrt{n}.$$

- **Remark 2.** 1. According to the diameter isoperimetric inequality in Theorem 5.3.1, we have $\psi_{\mu} = cD$ if μ is supported on a convex set of diameter D.
 - The convex localization based proof can be extended to the case $\operatorname{Cov}_{X \sim \mu}(X) = \mathbb{I}_n$, then the covariance of the 1-dimensional measure $\leq \sqrt{n}$. We obtained a bound $\psi_{\mu} \leq c\sqrt{n}$. Intuitively, for logconcave measure with covariance \mathbb{I}_n , Chebyshev's inequality also implies that the mass should concentrate inside a ball of radius \sqrt{n} .
 - The convex localization based proof can also be extended to the case where μ is α -strongly logconcave, that is, $-\nabla^2 \log(\mu) \succeq \alpha \mathbb{I}_n$.
 - 2. For a general measure with $\mathbb{E}_{X \sim \mu}[X] = 0$, $\operatorname{Cov}_{X \sim \mu}(X) = A$, after rescaling, the conjecture states that

$$\psi_{\mu} \le c \left\| A \right\|_2.$$

The set of logconcave measures contains all uniform measure on all kinds of convex sets. Without knowing the exact form of these convex sets, we don't have a lot of tools to prove an isoperimetric inequality in high dimension. At a high level, the main proof idea is reduce to the problem to a much simpler problem that we are familiar with.

- In diameter isoperimetric inequality and convex localization lemma, the idea is to reduce the high dimension problem to many 1-dimensional problems.
- Here, we use Eldan's stochastic localization to reduce the problem to many Gaussian-like strongly logconcave isoperimetric problems.

5.4.1 Eldan's stochastic localization

TODO

Bibliography

- [BGL⁺14] Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion operators, volume 103. Springer, 2014.
- [BH97] Sergey G Bobkov and Christian Houdré. Isoperimetric constants for product probability measures. *The Annals of Probability*, pages 184–205, 1997.
- [BL02] Herm Jan Brascamp and Elliott H Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. In *Inequalities*, pages 441–464. Springer, 2002.
- [Bus82] Peter Buser. A note on the isoperimetric constant. In Annales scientifiques de l'École normale supérieure, volume 15, pages 213–230, 1982.
- [DF91] Martin Dyer and Alan Frieze. Computing the volume of convex bodies: a case where randomness provably helps. *Probabilistic combinatorics and its applications*, 44(123-170):0754–68052, 1991.
- [Kla23] Bo'az Klartag. Logarithmic bounds for isoperimetry and slices of convex sets. *arXiv preprint arXiv:2303.14938*, 2023.
- [KLS95] Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems for convex bodies and a localization lemma. Discrete & Computational Geometry, 13(3):541–559, 1995.
- [LS93] László Lovász and Miklós Simonovits. Random walks in a convex body and an improved volume algorithm. *Random structures & algorithms*, 4(4):359– 412, 1993.
- [LV18] Yin Tat Lee and Santosh S Vempala. The Kannan-Lov\'asz-Simonovits conjecture. arXiv preprint arXiv:1807.03465, 2018.
- [Vem05] Santosh Vempala. Geometric random walks: a survey. Combinatorial and computational geometry, 52(573-612):2, 2005.