Exercise 2.1. ★

Show that the following spaces admit natural structures of Fréchet spaces: (a) $L^p_{\text{loc}}(\mathbb{R}^n)$.

(b) $C^{\infty}(\overline{\Omega})$, where Ω is a bounded open set in \mathbb{R}^n . Recall that this space is defined as the space of functions $f \in C^{\infty}(\Omega)$ such that each $\partial^{\alpha} f$ extends continuously to $\overline{\Omega}$.

(c) $C^{\infty}(\mathbb{R}^n)$, where we do not assume any global bound on f or its derivatives.

(d) The Schwartz space $\mathcal{S}(\mathbb{R}^n)$.

Exercise 2.2. **★**

Show that $C_c^{\infty}(\mathbb{R}^n)$ does **not** admit the structure of a Fréchet space. More precisely, prove the following statement: suppose that $(\mathcal{N}_p)_{p\in\mathbb{N}}$ is a family of seminorms on $C_c^{\infty}(\mathbb{R}^n)$ and ddenotes the induced distance. Assume that for every sequence $(\varphi_j)_{j\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R}^n)$ converging to some $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ with respect to d, also $\varphi_j \to \varphi$ pointwise¹. Then show that $(C_c^{\infty}(\mathbb{R}^n), d)$ cannot be complete.

Exercise 2.3.

(a) Show that the function $f(x) = e^x$ is not a tempered distribution, i.e. that there exists no $T \in \mathcal{S}'(\mathbb{R})$ such that $\langle T, \varphi \rangle = \int_{\mathbb{R}} f(x)\varphi(x) \, dx$ for every $\varphi \in C_c^{\infty}(\mathbb{R})$.

(b) Show that the function $g(x) = e^x \cos(e^x)$ does define a tempered distribution (in the above sense).

Exercise 2.4.

Let $T \in \mathcal{S}'(\mathbb{R}^n)$ be a tempered distribution and let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be such that $\varphi \equiv 0$ on supp T. Is it true that $\langle T, \varphi \rangle = 0$?

Exercise 2.5.

For $\lambda > 0$, let $T_{\lambda} : \mathcal{S}(\mathbb{R}) \to \mathbb{R}$ be defined by

$$\langle T_{\lambda}, \varphi \rangle := \lim_{\varepsilon \to 0} \int_{(-\infty, -\varepsilon] \cup [\lambda \varepsilon, \infty)} \frac{\varphi(t)}{t} \, \mathrm{d}t.$$

Show that T_{λ} is a tempered distribution and relate it to $T_1 = p. v. \frac{1}{t}$.

¹One has to assume some kind of compatibility between the norms \mathcal{N}_p and the usual convergence of functions, otherwise $C_c^{\infty}(\mathbb{R}^n)$ is just an abstract vector space and one can put even a Banach structure on it. In fact, it is enough to just require that $\varphi_j \rightharpoonup \varphi$ in the sense of distributions.

Exercise 2.6.

Let $1 and <math>(u_j)_{j \in \mathbb{N}} \subset L^p(\mathbb{R})$ be a sequence of functions such that $u_j \rightharpoonup u$ in $\mathcal{S}'(\mathbb{R})$ for a function $u \in L^p(\mathbb{R})$. (a) Show that

 $u_j \rightharpoonup u$ in $L^p(\mathbb{R}^n) \iff ||u_j||_{L^p} \le C$ for some constant C > 0.

(b) For each $1 , construct one such sequence that does not satisfy the two equivalent conditions from part (a), that is, <math>u_j, u \in L^p(\mathbb{R})$ such that $u_j \rightharpoonup u$ in \mathcal{S}' but not in L^p .

Exercise 2.7.

Consider the evaluation map $\operatorname{ev}_0 : C_b^0(\mathbb{R}) \to \mathbb{R}$, $\operatorname{ev}_0(\varphi) = \varphi(0)$, where $C_b^0(\mathbb{R})$ denotes the Banach space of all continuous and bounded functions on \mathbb{R} . (a) Show that there exists a linear bounded extension $T : L^{\infty}(\mathbb{R}) \to \mathbb{R}$ of ev_0 .

(b) Show that any such $T \in L^{\infty}(\mathbb{R})^*$ does not correspond to any function in $L^1(\mathbb{R})$. As a result, the embedding $L^1(\mathbb{R}) \hookrightarrow L^1(\mathbb{R})^{**} = L^{\infty}(\mathbb{R})^*$ is far from being surjective.