Exercise 3.1. ★

Let $T \in \mathcal{E}'(\mathbb{R}^n)$ and let $p \in \mathbb{N}$ be the order of T. Consider moreover $\varphi \in C^{\infty}(\mathbb{R}^n)$, such that $\partial^{\alpha} \varphi = 0$ on supp T for any α such that $|\alpha| \leq p$. Show that

 $\langle T, \varphi \rangle = 0.$

Hint: denoting $K := \operatorname{supp} T$ and $K_{\delta} := \{x \in \mathbb{R}^n : \operatorname{dist}(x, K) \leq \delta\}$, define for every small enough $\varepsilon > 0$ the function $\psi_{\varepsilon} := \mathbb{1}_{K_{2\varepsilon}} \star \chi_{\varepsilon}$, where $(\chi_{\varepsilon})_{\varepsilon>0}$ is a standard family of mollifiers, and given any $\varphi \in C^{\infty}(\mathbb{R}^n)$, investigate the behavior of $\langle T, \varphi \psi_{\varepsilon} \rangle$ as $\varepsilon \to 0$.

Exercise 3.2. **★**

We have seen in the lecture that for every $T \in \mathcal{S}'(\mathbb{R}^n)$, there is a well-defined map

 $\varphi \in \mathcal{S}(\mathbb{R}^n) \longmapsto T \star \varphi \in C^{\infty}(\mathbb{R}^n).$

(a) Show that this map is continuous as a linear map between Fréchet spaces.

(b) Show that, if in addition $T \in \mathcal{E}'(\mathbb{R}^n)$, then $T \star \varphi \in \mathcal{S}(\mathbb{R}^n)$.

(c) In this case, prove that moreover the map is continuous into the space $\mathcal{S}(\mathbb{R}^n)$.

Exercise 3.3.

Recall the definition of the translation operators: for $a \in \mathbb{R}^n$ we first define $\tau_a \varphi(x) = \varphi(x-a)$ for functions $\varphi \in \mathcal{S}(\mathbb{R}^n)$, and then we define by duality $\langle \tau_a T, \varphi \rangle := \langle T, \tau_{-a} \varphi \rangle$ for $T \in \mathcal{S}'(\mathbb{R}^n)$. (a) \bigstar Prove that $\forall T \in \mathcal{S}'(\mathbb{R}^n), \forall \varphi \in \mathcal{S}(\mathbb{R}^n)$ and $\forall a \in \mathbb{R}^n$ it holds:

$$\tau_a(T\star\varphi) = (\tau_a T)\star\varphi = T\star\tau_a\varphi.$$

(b) Let $U : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ be a linear continuous map commuting with translations, that is, such that for any $a \in \mathbb{R}^n$, $U \circ \tau_a = \tau_a \circ U$. Prove that there exists a $T \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$U\varphi = T \star \varphi \qquad \forall \varphi \in \mathcal{S}(\mathbb{R}^n).$$

Exercise 3.4.

(a) Determine all the tempered distributions $T \in \mathcal{S}'(\mathbb{R})$ such that tT = 1 (here t is the independent variable of \mathbb{R} and 1 denotes the constant function 1, seen as a distribution).

(b) Does there exist any tempered distribution $S \in \mathcal{S}'(\mathbb{R})$ such that $t^2S = 1$?

Exercise 3.5.

(a) Given a rotation $A \in SO(n)$, define by duality the rotation operator $\mathsf{R}_A : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ for tempered distributions, extending the rotation operator $\mathsf{R}_A f(x) := f(Ax)$ of functions. How is the Fourier transform of $\mathsf{R}_A T$ related to \widehat{T} ?

(b) Given a scalar $\lambda > 0$, define by duality the dilation operator $\mathsf{D}_{\lambda} : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ for tempered distributions, extending the dilation operator $\mathsf{D}_{\lambda}f(x) := f(\lambda x)$ of functions. How is the Fourier transform of $\mathsf{D}_{\lambda}T$ related to \widehat{T} ?

(c) Show that if $T \in \mathcal{S}'(\mathbb{R}^n)$ is radially symmetric then so is \widehat{T} . Show that if T is α -homogeneous then \widehat{T} is β -homogeneous for some $\beta \in \mathbb{R}$. What is β ?

(d) Show that if $f \in L^1_{loc}(\mathbb{R}^n) \cap \mathcal{S}'(\mathbb{R}^n)$ and is radially symmetric (that is, $\mathsf{R}_A f = f$ for every $A \in \mathsf{SO}(n)$) and α -homogeneous (that is, $\mathsf{D}_\lambda f = \lambda^\alpha f \ \forall \lambda > 0$), then $f(x) = c|x|^\alpha$ almost everywhere, for some $c \in \mathbb{R}$.