
D-MATH
Prof. Tristan Rivière

Functional Analysis II
Sheet 8

ETH Zürich
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Exercise 8.1.
In this exercise we will show that the range of exponents of the Hausdorff–Young inequality
is sharp. To do that, consider f(x) = e−x2/2 and fix some parameter a > 0 (a = 10 will do).
Then for N ∈ N define

fN(x) :=
N∑
j=1

eixjaf(x− ja).

(a) Compute f̂N .

(b) Show that for all p ∈ [1,∞] there is a constant c > 0 such that ∥fN∥Lp(R) ≥ cN1/p and

∥f̂N∥Lp(R) ≥ cN1/p.

(c) Show that for some constant C > 0, ∥fN∥L1(R) ≤ CN and ∥f̂N∥L1(R) ≤ CN for all N .

(d) Show that for some constant C ′ > 0, ∥fN∥L∞(R) ≤ C ′ and ∥f̂N∥L∞(R) ≤ C ′ for all N .

(e) Conclude that, if p ∈ [1,∞] is such that the Fourier transform is bounded from Lp(R) to
Lp′(R), then necessarily p ≤ 2.

Exercise 8.2.
In this exercise we will prove the “integral Minkowski inequality”: let (X,µ) and (Y, ν) be
two σ-finite measure spaces1 and let f : X × Y → [0,∞) be measurable with respect to the
product measure. Show that for each 1 ≤ p < +∞ it holds:(∫

X

(∫
Y

f(x, y) dν(y)

)p

dµ(x)

)1/p

≤
∫
Y

(∫
X

f(x, y)p dµ(x)

)1/p

dν(y).

Hint: look at what inequality you get when (Y, ν) = ({1, 2},#) and try to replicate the
proof of that inequality from Measure Theory.

1You can just take them to be measurable subsets of Euclidean space with the Lebesgue measure—we
only need that the product measure is well defined and that Tonelli’s theorem holds.
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Exercise 8.3.
Fix 1 ≤ p ≤ ∞ and suppose that K : (0,∞) × (0,∞) → R satisfies the following two
properties:

• K is homogeneous of degree −1, that is, for λ > 0, K(λx, λy) = λ−1K(x, y).

• it holds that AK :=
∫∞
0

|K(1, y)|y−1/p dy < +∞.

We define the linear operator

(Tf)(x) :=

∫ ∞

0

K(x, y)f(y) dy;

show that ∥Tf∥Lp ≤ AK∥f∥Lp .
Hint: write the function (Tf)(x) as an integral of functions of x depending on some other
parameter, and apply the integral Minkowski inequality.

Exercise 8.4.
(a) Show the following version of the Hardy inequality: given a measurable function g :
(0,∞) → R and two real numbers 1 ≤ p < ∞ and r > 0,∫ ∞

0

(∫ x

0

|g(y)| dy
)p

x−r−1 dx ≤
(p
r

)p
∫ ∞

0

(y|g(y)|)py−r−1 dy.

Hint: deduce it from the estimate of Exercise 8.3.

(b) Obtain the following more common version of the Hardy inequality: if u : [0,∞) → R is
an absolutely continuous function2 with u(0) = 0, then for any p > 1 it holds∫ ∞

0

(
|u(x)|
x

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

|u′(x)|p dx.

2This just means that u is the primitive of an L1 function.

2 / 3



D-MATH
Prof. Tristan Rivière

Functional Analysis II
Sheet 8

ETH Zürich
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Exercise 8.5.
This exercise assumes familiarity with the Riesz representation theorem for measures and
the Radon–Nikodym theorem.
The goal of this exercise is to give a different proof of the fact that the dual of Lp is Lp′

(where 1 ≤ p < ∞ and 1
p
+ 1

p′
= 1) using two classical theorems from Measure Theory instead

of abstract Functional Analysis. For simplicity we deal with an open set Ω ⊂ Rn, which we
write as an increasing union of bounded open sets Ω1 ⊂ Ω2 ⊂ · · · . Let ℓ : Lp(Ω) → R be a
linear bounded functional.
(a) Show that for each j, ℓ naturally defines a linear bounded functional on Cc(Ωj). There-
fore, by the Riesz representation theorem, we get a signed3 Radon measure νj on Ωj.

(b) Show that for every j, |νj| ≪ Ln. Hence, by the Radon–Nikodym theorem we get
measurable functions fj ∈ L1(Ωj) such that dνj = fjdLn. Show also that the functions fj
and fj+1 agree almost everywhere on Ωj and hence they define a global function f ∈ L1

loc(Ω).

(c) Show that f ∈ Lp′(Ω) and conclude.

3A signed Radon measure ν is just the difference of two positive (usual) Radon measures ν+ and ν−;
this decomposition is unique if ν+ and ν− are mutually orthogonal, and in this case we denote the total
variation measure by |ν| := ν+ + ν−.
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