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The first three exercises in this series are dedicated to the proof of the general Marcinkiewicz
interpolation theorem (Theorem 4.3 in the script) given in Appendix B of Stein’s book1.

Exercise 9.1.
In this exercise we will prove the following inequality for a non-increasing function h :
(0,∞) → [0,∞): (∫ ∞

0

[t1/ph(t)]q2
dt

t

)1/q2

≤ A

(∫ ∞

0

[t1/ph(t)]q1
dt

t

)1/q1

,

where 0 < p ≤ ∞, 0 < q1 ≤ q2 ≤ ∞ and A is a constant depending on q1, q2 and p.

(a) Show this first for q2 = ∞ (where the left hand side is interpreted as the supremum).

(b) Then show it for every q1 < q2 < ∞.

Exercise 9.2.
Prove the “second Hardy inequality”: for a measurable function f : (0,∞) → [0,∞), and
numbers p ≥ 1 and r > 0,(∫ ∞

0

(∫ ∞

x

f(y) dy

)p

xr−1 dx

)1/p

≤ p

r

(∫ ∞

0

(yf(y))pyr−1 dy

)1/p

.

Hint: recall the proof of the first Hardy inequality (Exercise 8.4).

Exercise 9.3.
The goal of this (long) exercise is to prove the general form of the Marcinkiewicz interpolation
theorem. Assume we are given exponents

1 ≤ p0 ≤ q0 ≤ ∞ and 1 ≤ p1 ≤ q1 ≤ ∞ with p0 < p1 and q0 ̸= q1.

Let T be a sub-additive operator defined on Lp0(Rn)+Lp1(Rn) and assume that T is of weak
type (pi, qi) for i = 0, 1, meaning that

Ln({x ∈ Rn : |Tf(x)| > α}) ≤
(
Ai∥f∥Lpi

α

)qi

∀α > 0

in case qi < ∞, and in case qi = ∞, that ∥Tf∥L∞ ≤ Ai∥f∥Lpi . The theorem then states
that, given 0 < θ < 1 and letting

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
,

1Stein, Elias M. Singular Integrals and Differentiability Properties of Functions, Princeton: Princeton
University Press, 1971. https://doi.org/10.1515/9781400883882
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then T is of strong type (p, q), meaning that ∥Tf∥Lq ≤ A∥f∥Lp for a constant A depending
on p0, p1, q0, q1 and θ.

We define the parameter σ as

σ =
1/q0 − 1/q

1/p0 − 1/p
=

1/q − 1/q1
1/p− 1/p1

.

For f ∈ Lp(Rn), we define its non-increasing rearrangement f ∗ as in Section 6.6 of the script.
Then, for t > 0, we let

f t(x) :=

{
f(x) if |f(x)| > f ∗(tσ),

0 otherwise

and define ft := f − f t.

(a) Check the following properties (a drawing may help!):

• (f t)∗(y) ≤ f ∗(y) if 0 ≤ y ≤ tσ;

• (f t)∗(y) = 0 if y > tσ.

(b) Check also that

• (ft)
∗(y) ≤ f ∗(tσ) if y ≤ tσ;

• (ft)
∗(y) ≤ f ∗(y) if y ≥ tσ.

(c) Verify that, if f = f1 + f2, then

(Tf)∗(t) ≤ (Tf1)
∗(t/2) + (Tf2)

∗(t/2).

(d) Show that, if f ∈ Lp(Rn), f t ∈ Lp0 and ft ∈ Lp1 .

(e) Prove the estimate

T (f)∗(t) ≤ A0(2/t)
1/q0∥f t∥Lp0 + A1(2/t)

1/q1∥ft∥Lp1 . (1)

(f) Using Exercise 9.1, show that

∥Tf∥Lq ≤ C

(∫ ∞

0

(t1/q(Tf)∗(t))p
dt

t

)1/p

(2)

for a constant C > 0.

(g) Show that, in order to prove the theorem, it is enough to show the following two estimates:(∫ ∞

0

[t1/q−1/q0∥f t∥Lp0 ]p
dt

t

)1/p

≤ C∥f∥Lp (3)

and (∫ ∞

0

[t1/q−1/q1∥ft∥Lp1 ]p
dt

t

)1/p

≤ C∥f∥Lp . (4)
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(h) Show, using again Exercise 9.1, that

∥f t∥Lp0 ≤ C

∫ tσ

0

y1/p0f ∗(y)
dy

y
. (5)

(i) Prove (3) by using (5) and the Hardy inequality (Exercise 8.4).

(j) Prove (4) by a similar argument: first find an analog of (5) and then conclude by the
second Hardy inequality (Exercise 9.2).

Exercise 9.4.
Prove the following maximal function estimate for functions f ∈ L logL(Rn): for any mea-
surable A ⊂ Rn with finite measure,∫

A

|Mf |(y) dy ≤ C

∫
Rn

|f |(y) log
(
e+ Ln(A)

|f |(y)|
∥f∥L1(Rn)

)
dy,

where C is a constant only depending on n. Here L logL is the space of functions f ∈ L1(Rn)
for which the right hand side is finite.

Hint: express the left hand side as an integral of the distribution function of |Mf | and use
inequality (5.9) from the script for large enough α (how large?).
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