Exercise 10.1.

Let $1 \leq p < q \leq \infty$ and $f \in L^{p,\infty}(X,\mu) \cap L^{q,\infty}(X,\mu)$, where (X,μ) is a σ -finite measure space (e.g. a measurable subset of \mathbb{R}^n with the Lebesgue measure). Show that for every rsuch that p < r < q, $f \in L^r(X,\mu)$ with

$$||f||_{L^r} \le \left(\frac{r}{r-p} + \frac{r}{q-r}\right)^{\frac{1}{r}} ||f||_{L^{p,\infty}}^{1-\theta} ||f||_{L^{q,\infty}}^{\theta},$$

where $\theta \in (0, 1)$ is defined by

$$\frac{1}{r} = \frac{1-\theta}{p} + \frac{\theta}{q}.$$

Exercise 10.2.

Let $f_1, \ldots, f_N \in L^{p,\infty}(X,\mu)$ for $1 \le p < \infty$. Show that

$$\left\| \sum_{j=1}^{N} f_{j} \right\|_{L^{p,\infty}} \le N \sum_{j=1}^{N} \|f_{j}\|_{L^{p,\infty}}.$$

Exercise 10.3.

Let $0 . Prove that <math>L^p(X, \mu)$ is a complete quasi-normed space, i.e. that $||f||_{L^p} := (\int_X |f|^p d\mu)^{1/p}$ defines a quasi-norm and every quasi-norm Cauchy sequence is quasi-norm convergent.

Hint: recall the proof of the corresponding theorem for $p \ge 1$.

Exercise 10.4.

Consider the following N! functions $f_{\sigma} : \mathbb{R} \to \mathbb{R}$, for $\sigma \in S_N$, the group of permutations of $\{1, 2, \ldots, N\}$:

$$f_{\sigma} := \sum_{j=1}^{N} \frac{N}{\sigma(j)} \chi_{\left[\frac{j-1}{N}, \frac{j}{N}\right)}.$$

- (a) Show that $||f_{\sigma}||_{L^{1,\infty}} = 1$.
- (b) Show that

$$\left\|\sum_{\sigma\in\mathcal{S}_n} f_{\sigma}\right\|_{L^{1,\infty}} = N! \left(1 + \frac{1}{2} + \dots + \frac{1}{N}\right).$$

(c) Conclude that $L^{1,\infty}(\mathbb{R})$ is not normable, i.e. that there is no norm $\|\cdot\|$ on $L^{1,\infty}(\mathbb{R})$ such that, for a constant $C \ge 1$, $C^{-1}\|f\| \le \|f\|_{L^{1,\infty}} \le C\|f\|$ holds for every $f \in L^{1,\infty}(\mathbb{R})$.

Exercise 10.5.

For a measurable function $g: \mathbb{R}^n \to [0,\infty)$, denote by $g^*: [0,\infty) \to [0,\infty)$ its decreasing rearrangement.

(a) Prove that for every measurable set $A \subset \mathbb{R}^n$,

$$\int_A g(x) \, \mathrm{d}x \le \int_0^{|A|} g^*(t) \, \mathrm{d}t.$$

(b) Show the Hardy–Littlewood inequality: for any measurable functions $f, g: \mathbb{R}^n \to [0, \infty)$,

$$\int_{\mathbb{R}^n} f(x)g(x)\,\mathrm{d} x \leq \int_0^\infty f^*(t)g^*(t)\,\mathrm{d} t.$$