D-MATH	Functional Analysis II	ETH Zürich
Prof. Tristan Rivière	Sheet 11	FS 2025

Throughout this exercise sheet we will assume that $\Omega \subset \mathbb{R}^n$ is a Lebesgue-measurable set and will work with the Lebesgue measure.

Exercise 11.1.

Given a right-continuous and non-increasing function $\varphi : (0, \infty) \to [0, \infty)$ such that $\varphi(t) = 0$ for all $t \ge |\Omega|$, prove that there exists a measurable function $f : \Omega \to [0, \infty)$ such that $f^*(t) = \varphi(t)$ for all t > 0.

Hint: try constructing f such that each $\{f > \lambda\}$ is of the form $B_r \cap \Omega$ for an appropriate r that guarantees that the distribution functions agree.

Exercise 11.2.

Suppose that $\varphi : (0, \infty) \to [0, \infty)$ is as in Exercise 11.1, and let $g \in L^1(\Omega)$. In this exercise we will show that there exists a function $f \in L^{\infty}(\Omega)$ such that $f^* = \varphi$ and equality in the Hardy–Littlewood inequality holds, namely

$$\int_{\Omega} fg \, \mathrm{d}x = \int_0^\infty f^*(s) g^*(s) \, \mathrm{d}s = \int_0^\infty \varphi(s) g^*(s) \, \mathrm{d}s.$$

Denote

$$d_g(\lambda) := \left| \left\{ |g| > \lambda \right\} \right|$$
 and $\bar{d}_g(\lambda) := \left| \left\{ |g| \ge \lambda \right\} \right|,$

(a) Show that the set $\Lambda \subset (0, \infty)$ of those $\lambda > 0$ for which $\overline{d}_g(\lambda) - d_g(\lambda) = |\{|g| = \lambda\}| > 0$ is at most countable.

We denote $\Omega_{\lambda} := \{ |g| = \lambda \}$ for $\lambda \in \Lambda$, and $\Omega^* := \Omega \setminus \bigcup_{\lambda \in \Lambda} \Omega_{\lambda}$. Then define f in the following way: for $x \in \Omega^*$, we let

$$f(x) := \operatorname{sgn}(g(x))\varphi(d_g(|g(x)|)) = \operatorname{sgn}(g(x))\varphi(d_g(|g(x)|)).$$

For $\lambda \in \Lambda$, let $\varphi_{\lambda} : [0, \infty) \to [0, \infty)$ be defined by $\varphi_{\lambda}(t) := \varphi(t + d_g(\lambda))$ whenever $0 \le t < |\Omega_{\lambda}|$ and $\varphi_{\lambda}(t) = 0$ for $t \ge |\Omega_{\lambda}|$, and apply Exercise 11.1 to obtain a measurable function $h_{\lambda} : \Omega_{\lambda} \to [0, \infty)$ such that $h_{\lambda}^* = \varphi_{\lambda}$. Then define, for $x \in \Omega_{\lambda}$,

$$f(x) := \operatorname{sgn}(g(x))h_{\lambda}(x).$$

(b) Show that $\varphi(\bar{d}_g(|g(x)|)) \leq |f(x)| \leq \varphi(d_g(|g(x)|))$ almost everywhere.

(c) Show that, for almost every $x, y \in \Omega$, |g|(x) > |g|(y) implies $|f|(x) \ge |f|(y)$.

(d) Prove that $\int_{\Omega} fg \, dx = \int_0^{\infty} f^*(t)g^*(t) \, dt$ by examining the equality cases in Exercise 10.5. Now it remains to show that $f^* = \varphi$. For that, it is enough to show that $d_f(\mu) = d_{\varphi}(\mu)$ for every $\mu > 0$. Fix one such μ and let t > 0 be determined by $\varphi^{-1}((\mu, \infty)) = (0, t)$.

(e) Show that $|\{x : \overline{d}_g(|g(x)|) < t\}| \le t$. **Hint:** use the left-continuity of \overline{d}_g .

(f) Show that $|\{x : d_g(|g(x)|) \le s\}| \ge s \forall s \ge 0$ and deduce that $|\{x : d_g(|g(x)|) < t\}| \ge t$.

(g) Show that, if the set

$$\omega := \{ x : d_g(|g(x)|) < t \le \bar{d}_g(|g(x)|) \}$$

has positive measure, then |g| is equal to a constant almost everywhere in ω .

(h) Conclude by proving that $|\{|f| > \mu\}| = |\{\varphi > \mu\}| = |(0, t)| = t$.

Exercise 11.3.

The goal of this exercise is to show that the dual of $L^{p,1}(\Omega)$ for $1 is <math>L^{p',\infty}(\Omega)$, where $\frac{1}{p} + \frac{1}{p'} = 1$. For simplicity you may assume that Ω is open.

(a) First show that any $h \in L^{p',\infty}(\Omega)$ induces a bounded linear functional

$$f \in L^{p,1}(\Omega) \mapsto \int_{\Omega} fh \, \mathrm{d}x \in \mathbb{R}.$$

(b) Now argue as in Exercise 8.5 and write $\Omega = \bigcup_{k \ge 1} \Omega_k$ with $\Omega_1 \subseteq \Omega_2 \subseteq \cdots$ and each Ω_k is open and bounded. Show that, given $T: L^{p,1}(\Omega) \to \mathbb{R}$ linear bounded, the restriction of Tto $C_c(\Omega_k)$ induces a signed measure which is absolutely continuous with respect to \mathcal{L}^n and therefore, by Radon–Nikodym, is represented by an L^1 function. Show moreover that these functions agree to a global function $h \in L^1_{loc}(\Omega)$ such that

$$T(\varphi) = \int_{\Omega} \varphi h \, \mathrm{d}x$$

whenever $\varphi \in C_c(\Omega)$.

(c) Show that $h \in L^{p',\infty}(\Omega)$ by considering integrals of the form

$$\int_{\Omega} \varphi h \, \mathrm{d}x$$

where $\varphi \in C_c(\Omega)$ approximates $\operatorname{sgn}(h) \mathbb{1}_{\Omega_k \cap \{|h| > \lambda\}}$ and studying the behavior of the quantities $\lambda |\{|h| > \lambda\}|^{1/p'}$ for $\lambda > 0$.

Exercise 11.4.

Let $f \in L^1(\mathbb{R}^n)$ be a function supported in the ball $B = B_1(0)$. Show that for each $k \ge 0$,

$$M(f)(\log(2 + M(f)))^{k} \in L^{1}(B) \quad \iff \quad |f|(\log(2 + |f|))^{k+1} \in L^{1}(B).$$

Hint: understand the proof of Theorem 7.3 in the script and generalize it.