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Exercise 1.1.
Compute the Fourier transform of the following functions, paying attention to the spaces
where they belong:

(a) f(x) = e−|x|, f ∈ L1(R).

Solution: We compute f̂(ξ) directly, since the Fourier transform is defined pointwise:

f̂(ξ) =
1√
2π

∫ +∞

−∞
e−|x|e−ixξ dx =

1√
2π

(∫ ∞

0
e−xeixξ dx+

∫ ∞

0
e−xe−ixξ dx

)
=

1√
2π

(∫ ∞

0
ex(−1+iξ) dx+

∫ ∞

0
ex(−1−iξ) dx

)
=

1√
2π

(
1

1− iξ
+

1

1 + iξ

)
=

2√
2π (1 + ξ2)

.

(b) f(x) = sinx
x
, f ∈ L2(R).

Solution: The pointwise Fourier transform does not necessarily make sense; however we know that
for the sequence fR(x) := χ[−R,R](x)f(x) ∈ L1 ∩ L2, f̂R(ξ) makes sense pointwise and f̂R → f̂ in

L2; therefore if we can compute the pointwise limit limR→∞ f̂R(ξ) for almost every ξ ∈ R, we will
characterize f̂ ∈ L2.

The precise details of the computation belong to Complex Analysis and we will only skectch them
here, since this is a course on Functional Analysis. Write

f̂R(ξ) =
1√
2π

∫ R

−R

sin z

z
e−izξ dz =

1√
2π

∫ R

−R

eiz − e−iz

2iz
e−izξ dz

= lim
ϵ↓0

1√
2π

∫
[−R,−ϵ]∪[ϵ,R]

ei(1−ξ)z − ei(−1−ξ)z

2iz
dz

and compute the integral using Cauchy’s theorem and Jordan’s lemma from complex analysis. More
precisely, for each of the two exponentials, integrate on the upper or lower half plane depending on
the sign of 1 − ξ and −1 − ξ, and complete the path [−R,−ϵ] ∪ [ϵ, R] by using two half circles of
radii R and ϵ on the chosen half plane to enclose a bounded region. Since the functions eiαz/z are
always holomorphic away from the origin for every α ∈ C, there is no residue term; the term along
the circle of radius R converges to zero as R → ∞ thanks to Jordan’s lemma, and we only get a
contribution from the half circle of radius ϵ, equal to ± 1√

2π
πi
2i from each term. These terms have

the same sign and therefore cancel out if 1− ξ and −1− ξ have the same sign, which happens for
|ξ| > 1, thus f̂(ξ) = 0; for |ξ| < 1 instead they add up and we get π/

√
2π. In summary,

f̂(ξ) =

√
π

2
χ[−1,1](ξ).

Alternatively one may start from this expression, compute its Fourier transform (which is straight-
foward) and apply the Fourier inversion theorem to deduce that its inverse fourier transform is
f .

(c) f(x) = e−
1
2
|x|2 , f ∈ S(Rn).
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Solution: We first compute the Fourier transform in one dimension:

f̂(ξ) =
1√
2π

∫ ∞

−∞
e−

1
2
x2
e−ixξ dx =

1√
2π

∫ ∞

−∞
e−

1
2
(x2+2ixξ) dx

=
1√
2π

e−
1
2
ξ2
∫ ∞

−∞
e−

1
2
(x+iξ)2 dx

=
1√
2π

e−
1
2
ξ2
∫ ∞+iξ

−∞+iξ
e−

1
2
z2 dz.

This last expression just means the limit for R → ∞ of the integrals from −R+ iξ to R+ iξ in the
complex plane. Since the expression exp

(
−1

2z
2
)
is holomorphic in z, for each R > 0 we may change

the path of integration to [−R,R]; the contribution of the segments [−R+ iξ,−R] and [R,R+ iξ]
converges exponentially to zero as R → ∞. Hence

f̂(ξ) =
1√
2π

e−
1
2
ξ2
∫ ∞

−∞
e−

1
2
z2 dz = e−

1
2
ξ2

by the famous formula of Gauss. The n-dimensional version just follows from factoring the expres-
sion and applying Fubini.

Exercise 1.2. ⋆
In this exercise we will show the existence of a smooth partition of unity subordinate to a
finite cover of a compact set.

(a) Prove that the function g : Rn → R,

g(x) =

{
exp

(
− 1

(1−|x|2)2

)
, |x| < 1

0, |x| ≥ 1

is smooth, nonnegative, and has support in B1(0).

Solution: Since this is a radial function and is clearly smooth around the origin, it is enough to
show that it is smooth along a ray. It is also clear that g(r) is smooth for all r ̸= 1, and moreover,
by iteratively computing its derivatives one sees that g(k)(r) = g(r)qk(r), where qk(r) is a rational
function singular at r = 1. Since rational functions grow slower than exponentials, we get that
limr↑1 g

(k)(r) = 0 and also, by induction,

g(k+1)(1) = lim
r→1

g(k)(r)

r − 1
= 0,

so all the derivatives of g at 1 exist and are equal to zero, hence are continuous at r = 1 as well.

(b) Let K ⊂ Rn be a compact set, and K ⊂ U ⊂ Rn be an open set. Show that there exists
a function Θ ∈ C∞

c (U) such that 0 ≤ Θ ≤ 1 everywhere and Θ ≡ 1 on K.

Hint: use convolution with a mollifier gϵ(x) := ϵ−ng(ϵ−1x) for ϵ > 0 sufficiently small.
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Solution: Let ϵ > 0 such that 3ϵ < dist(K,U c). Introduce χϵ(x) to be the characteristic function
of the open set of points which are at a distance less than ϵ from K. That is

χϵ(x) :=

{
1 in case dist(x,K) < ϵ,

0 otherwise
.

Let g be as in part (a), except that we normalize it so that
∫
Rn g = 1. We then introduce

Θ(x) := (χϵ ⋆ gϵ)(x) =

∫
Rn

χϵ(y) gϵ(x− y) dy,

where

gϵ(x) :=
1

ϵn
g
(x
ϵ

)
.

Clearly Θ ∈ C∞, since χϵ ∈ L1(Rn) and gϵ ∈ C∞
c (Rn). We are now proving

i) Θ(x) ≡ 1 on K.

ii) Θ(x) ≡ 0 in a neighborhood of U c.

Proof of i):
supp g ⊂ B1(0) ⇒ suppx gϵ(x) ⊂ Bϵ(0) ,

indeed
gϵ(x) ̸= 0 ⇔

∣∣∣x
ϵ

∣∣∣ < 1

and
suppy gϵ(x− y) ⊂ Bϵ(x) ,

indeed
gϵ(x− y) ̸= 0 ⇔ |x− y| < ϵ .

Let now x ∈ K : gϵ(x− y) ̸= 0 implies dist(y,K) < ϵ. This gives for such an x ∈ K∫
Rn

χϵ(y) gϵ(x− y) =

∫
Rn

gϵ(x− y) =

∫
Rn

g(x) = 1.

Proof of ii): we claim that Θ(x) = 0 if dist(x, U c) < ϵ: if Θ(x) ̸= 0, it means that there is some y
such that χϵ(y) ̸= 0 and gϵ(x− y) ̸= 0. Hence dist(y,K) < ϵ and dist(x, y) < ϵ, which means that
dist(K,U c) ≤ dist(K, y) + dist(y, x) + dist(x, U c) < 3ϵ, a contradiction.

(c) Let K ⊂ Rn be compact and U1, . . . , Up open subsets of Rn which cover K. Show that
there exist functions Θ1, . . . ,Θp such that for every i ∈ {1, . . . , p}, Θi ∈ C∞

c (Ui), 0 ≤ Θi ≤ 1
everywhere, and such that Θ1 + · · ·+Θp ≡ 1 on K.

Solution: Let ϵ > 0. From part (b), for each Ui there exists fi with the following properties :

• fi ∈ C∞
c (Ui)

• 0 ≤ fi ≤ 1

• fi ≡ 1 on (Ũi ∩K),
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where
Ũi := {x ∈ Ui | dist (x, U c

i ) > ϵ } .

We now choose ϵ > 0 small enough in such a way that

Kϵ := {x ∈ Rn : dist (x,K) < ϵ} ⊂
p⋃

i=1

Ũi.

We consider f ∈ C∞
c (Kϵ) given by part (b) such that f ≡ 1 on K. Finally we denote f0 := 1− f .

Observe that by construction
p∑

j=0

fj ≥ 1 on Rn .

Let

Θi(x) :=

{
fi(x)∑p

j=0 fj(x)
in case x ∈ Ui

0 otherwise
.

Then (Θi)i=1,...,p satisfies the required properties.

Exercise 1.3. ⋆
Prove that for every n ≥ 1 the Schwartz space S(Rn) is separable.

Hint: approximate a function f ∈ S(Rn) in each small cube by a rational number, and
regularize the resulting function by mollification.

Solution: We want to produce a countable set Q ⊂ S(Rn) such that for every f ∈ S(Rn), every
k ∈ N and every ε > 0 there exists q ∈ Q such that

Nk(f − q) = sup
x∈Rn

max
j≤k

(1 + |x|)k|Dj(f(x)− q(x))| ≤ ε

(this norm is equivalent to the one used in the lecture). For an integer N , let PN be the set of
functions which are equal to a (constant) rational number on each cube QN (a) :=

[
a1, a1 +

1
N

)
×

· · · ×
[
an, an + 1

N

)
, where a ranges over the lattice ΛN :=

(
1
NZ

)n
, and which vanish on all but

finitely many cubes. Fix a family of smooth mollifiers (gδ)δ>0 as in Exercise 1.2 and define

Q :=

{
h ⋆ gδ : h ∈ PN , N ∈ Z+ and

1

δ
∈ Z+

}
.

It is clear that Q ⊂ C∞
c (Rn) ⊂ S(Rn) and Q is countable. In order to show that it is dense, fix

f ∈ S(Rn) and k ∈ N. First observe that the sequence of functions f ⋆ gδ converges to f in the Nk

norm, as δ → 0: for j ≤ k,

|(Dj(f ⋆ gδ)−Djf)(x)| = |((Djf) ⋆ gδ)−Djf)(x)|

≤ δ sup
Bδ(x)

|Dj+1f | ≤ CδNk+1(f)(1 + |x|)−k δ↓0−−→ 0.
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Thus it is enough to show that, for a fixed small δ > 0, there is a sequence fN ∈ PN such that
Q ∋ fN ⋆ gδ → f ⋆ gδ in the Nk norm as N → ∞. Let ε > 0. For a parameter η > 0 to be
determined later, let R > 0 be large enough so that

sup
|x|>R−1

(1 + |x|)k|f(x)| < η

(which exists since Nk+1(f) < +∞) and define fN on QN (a) to be some rational number at distance
at most 1

N from f(a) in case QN (a) intersects BR−1, and 0 in the rest of cubes. Our goal is to show
that if N is large enough, then for each 0 ≤ j ≤ k,

sup
x∈Rn

(1 + |x|)k|Dj(fN ⋆ gδ − f ⋆ gδ)| = sup
x∈Rn

(1 + |x|)k|(fN − f) ⋆ Djgδ| ≤ ε. (1)

Therefore fix one such j and let φ := Djgδ for short. It follows that

sup
|x|>R

(1 + |x|)k|(fN − f) ⋆ φ(x)| = sup
|x|>R

(1 + |x|)k|f ⋆ φ(x)| ≤ C sup
|x|>R−1

(1 + |x|)k|f(x)| ≤ Cη ≤ ε

provided that we choose η small enough. On the other hand, for |x| ≤ R + 1, say x ∈ QN (a). In
case QN (a) ∩BR−1 ̸= ∅ we have that |fN (x)− f(a)| ≤ 1

N , so that

|f(x)− fN (x)| ≤ |f(x)− f(a)|+ |f(a)− fN (x)| ≤ sup
BR

|Df | 1
N

+
1

N
≤ (1 + |x|)−kC(R)

N
;

otherwise, we have that |x| > R− 1 and fN (x) = 0, therefore

|f(x)− fN (x)| = |f(x)| ≤ (1 + |x|)−kη.

In any case,

sup
|x|≤R

(1 + |x|)k|(fN − f) ⋆ φ(x)| ≤ C(δ) sup
|x|≤R+1

(1 + |x|)k|fN (x)− f(x)| ≤ C(δ)max

{
η,

C(R)

N

}
which can be made smaller than ε by first choosing η small enough and then N large enough.

Exercise 1.4.
Show the following baby version of the Poincaré inequality in the Schwartz space: for every
f ∈ S(Rn), with n ≥ 1, and for every R > 0, it holds that

∥f∥L1(BR(0)) ≤ 2R∥∇f∥L1(Rn).

Solution: For x ∈ Rn, write x = (x′, xn) ∈ Rn−1×R. Then, given f ∈ S(Rn), thanks to the decay
at infinity of Schwartz functions, we have

f(x′, xn) = lim
T→−∞

f(x′, T ) +

∫ xn

T
∂xnf(x

′, t) dt =

∫ xn

−∞
∂xnf(x

′, t) dt,
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and in particular

|f(x′, xn)| ≤
∫ ∞

−∞
|∇f(x′, t)|dt.

Then, by Fubini’s theorem,∫
Bn

R(0)
|f(x)|dx ≤

∫
Bn−1

R (0)

∫ R

−R
|f(x′, xn)|dxn dx′ ≤

∫
Bn−1

R (0)

∫ R

−R

∫ ∞

−∞
|∇f(x′, t)| dt dxn dx′

= 2R

∫
Bn−1

R (0)

∫ ∞

−∞
|∇f(x′, t)|dtdx′ ≤ 2R∥∇f∥L1(Rn).

Exercise 1.5. ♣
Show that there does not exist a function δ ∈ L1(Rn) (with respect to the Lebesgue measure)
such that δ ⋆ f = f for every f ∈ S(Rn).

Solution: Suppose that such a function exists. Let g ∈ C∞
c (B1) be a nonnegative function such

as the one from Exercise TODO, and normalize so that
∫
Rn g = 1. As above, define the functions

gϵ(x) := ϵ−ng(ϵ−1x), which are supported in Bϵ and still have
∫
Rn gϵ = 1 (in particular, gϵ ∈ S(Rn)).

It is well known that, for any function h ∈ L1(Rn), gϵ ⋆ h → h almost everywhere1. Applying this
to the function δ we see that

δ(x) = lim
ϵ↓0

δ ⋆ gϵ(x) = lim
ϵ↓0

gϵ(x) = 0

for almost every x ̸= 0, which proves that δ is zero almost everywhere, a contradiction.

1This holds at every Lebesgue point of h. There is an easy and convenient proof of this fact if we allow
taking a subsequence of ϵj ↓ 0, which is enough for this proof: it is enough to show that gϵ ⋆ h → h in L1,
whence a subsequence converges almost everywhere. To see this, given η > 0, choose a function φ ∈ C0

c (Rn)
such that ∥h− φ∥L1 < η; then using the uniform continuity of φ we have

lim sup
ϵ↓0

∥h ⋆ gϵ − h∥L1 ≤ lim sup
ϵ↓0

∥(h− φ) ⋆ gϵ∥L1 + ∥φ ⋆ gϵ − φ∥L1 + ∥φ− h∥L1

≤ lim sup
ϵ↓0

∥h− φ∥L1∥gϵ∥L1 + ∥φ ⋆ gϵ − φ∥L1 + ∥φ− h∥L1

≤ 2η + lim sup
ϵ↓0

∥φ ⋆ gϵ − φ∥L1 = 2η,

and we conclude since η was arbitrary.
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