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ETH Zürich
FS 2025

Exercise 2.1. ⋆
Show that the following spaces admit natural structures of Fréchet spaces:

(a) Lp
loc(Rn).

Solution: For each k ∈ N let Nk(f) := ∥f∥Lp(Bk), where Bk = Bk(0) ⊂ Rn. Then clearly
Nk(f) ≤ Nk+1(f)∀k and f ≡ 0 (a.e.) iff Nk(f) = 0∀k. Also, if (fj) is Cauchy with respect to each
Nk, then fj → f (k) in Lp(Bk) for some f (k) ∈ Lp(Bk) thanks to the completeness of the Lp spaces.
By the uniqueness of the limit, the functions f (k) define a global function f ∈ Lp

loc(R
n), and by the

characterization of convergence, fj → f in the induced distance.

(b) C∞(Ω), where Ω is a bounded open set in Rn. Recall that this space is defined as the
space of functions f ∈ C∞(Ω) such that each ∂αf extends continuously to Ω.

Solution: For each k ∈ N let Nk(f) := ∥f∥Ck(Ω). Then clearly Nk(f) ≤ Nk+1(f) ∀k and f ≡ 0

iff N0(f) = 0. Also, if (fj) is Cauchy with respect to each Nk, then fj → f (k) in Ck(Ω) for some
f (k) ∈ Ck(Ω) thanks to the completeness of the space Ck(Ω). By the uniqueness of the limit, the
functions f (k) agree and thus fj → f in all the seminorms (and hence in the induced distance) for
a function f ∈ C∞(Ω).

(c) C∞(Rn), where we do not assume any global bound on f or its derivatives.

Solution: For each k ∈ N let Nk(f) := ∥f∥Ck(Bk)
. Then clearly Nk(f) ≤ Nk+1(f)∀k and f ≡ 0 iff

Nk(f) = 0 ∀k. Also, if (fj) is Cauchy with respect to each Nk, then fj → f (k) in Ck(Bk) for some
f (k) ∈ Ck(Bk) thanks to the completeness of the space Ck(Bk). By the uniqueness of the limit,
the functions f (k) agree and thus, for each k, Nk(fj − f) → 0 (and hence fj → f in the induced
distance) for a function f ∈ C∞(Rn).

(d) The Schwartz space S(Rn).

Solution: We use the norms Nk introduced in the lecture. Clearly Nk(f) ≤ Nk+1(f) ∀k and f ≡ 0
iff N0(f) = 0. Let (fj) be a Cauchy sequence with respect to the induced distance. Given multi-
indices α and β, it follows that the functions xα∂βfj are a Cauchy sequence in Cb(Rn) = L∞ ∩C0

and hence converge uniformly to some function fα,β. Letting f := f0,0 ∈ Cb(Rn), by uniqueness of
the limit, we have the compatibility conditions that fα,β = xα∂βf . Recalling the definition of Nk

we see that in fact Nk(fj − f) → 0 for each k, which proves the completeness.

Exercise 2.2. ⋆
Show that C∞

c (Rn) does not admit the structure of a Fréchet space. More precisely, prove
the following statement: suppose that (Np)p∈N is a family of seminorms on C∞

c (Rn) and d
denotes the induced distance. Assume that for every sequence (φj)j∈N ⊂ C∞

c (Rn) converging
to some φ ∈ C∞

c (Rn) with respect to d, also φj → φ pointwise1. Then show that (C∞
c (Rn), d)

cannot be complete.

1One has to assume some kind of compatibility between the norms Np and the usual convergence of
functions, otherwise C∞

c (Rn) is just an abstract vector space and one can put even a Banach structure on
it. In fact, it is enough to just require that φj ⇀ φ in the sense of distributions.
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Solution: Fix a sequence of nonnegative functions φk ∈ C∞
c (Rn) such that φk > 0 on Bk, and

choose a sequence of positive real numbers ak such that

Np(akφk) ≤ 2−k for 1 ≤ p ≤ k.

Then the sequence ψk :=
∑

j≤k ajφj is Cauchy with respect to all the Np seminorms: for every p,
if we take m ≥ n ≥ p then

Np(anφn + · · ·+ amφm) ≤ Np(anφn) + · · ·+Np(amφm) ≤ 2−n + · · ·+ 2−m ≤ 2−n+1 n→∞−−−→ 0.

Hence (ψk) is Cauchy with respect to d, and if we assume that (C∞
c (Rn), d) is complete, it converges

to some function ψ ∈ C∞
c (Rn) with respect to the distance d. It follows from the compatibility

assumption that ψk → ψ also pointwise. Pick R > 0 such that suppψ ⊂ BR and a point x ∈ Rn\BR.
Then, by definition, ψk(x) is an increasing sequence of positive numbers and cannot converge to
ψ(x) = 0.

Exercise 2.3.

(a) Show that the function f(x) = ex is not a tempered distribution, i.e. that there exists
no T ∈ S ′(R) such that ⟨T, φ⟩ =

∫
R f(x)φ(x) dx for every φ ∈ C∞

c (R).
Solution: Suppose that such T ∈ S ′(R) exists and is of order m. Fix φ ∈ C∞

c (R) and let φa(y) :=
φ(y − a) for a > 0. Then

Nm(φa) = sup
y∈R

max
0≤i,j≤m

|y|i|∂jφa(y)| = sup
x∈suppφ

max
0≤i,j≤m

|a+ x|i|∂jφ(x)| ≤ C(1 + a)m,

where C depends on φ and m. Then∫
R
eyφa(y) dy =

∫
R
ex+aφ(x) dx = ea

∫
R
exφ(x) dx = λea,

where λ > 0 if we choose φ nonnegative. This clearly cannot be bounded by a constant times
Nm(φa) for a > 0 large enough.

(b) Show that the function g(x) = ex cos(ex) does define a tempered distribution (in the
above sense).

Solution: It is clear that g(x) is the derivative of h(x) = sin(ex), which is in L∞ and hence defines
a tempered distribution. Since h ∈ C1(R) and the distributional derivative agrees with the classical
derivative for C1 ∩ S ′ functions, g = h′ ∈ S ′.

Exercise 2.4.
Let T ∈ S ′(Rn) be a tempered distribution and let φ ∈ S(Rn) be such that φ ≡ 0 on suppT .
Is it true that ⟨T, φ⟩ = 0?
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Solution: No! Just take T = −δ′ and φ(t) = tχ(t), where χ ∈ C∞
c ((−2, 2)) is a cutoff function

with χ ≡ 1 on [−1, 1]. Then suppT = {0} and φ(0) = 0, but ⟨T, φ⟩ = φ′(0) = 1.

Exercise 2.5.
For λ > 0, let Tλ : S(R) → R be defined by

⟨Tλ, φ⟩ := lim
ε→0

∫
(−∞,−ε]∪[λε,∞)

φ(t)

t
dt.

Show that Tλ is a tempered distribution and relate it to T1 = p. v. 1
t
.

Solution: Suppose that λ > 1 (otherwise the proof is analogous). Then

⟨Tλ, φ⟩ = lim
ε→0

∫
(−∞,−ε]∪[λε,∞)

φ(t)

t
dt = lim

ε→0

∫
(−∞,−ε]∪[ε,∞)

φ(t)

t
dt−

∫
[ε,λε]

φ(t)

t
dt.

The first integral converges to ⟨p. v. 1t , φ⟩ and for the second one we have∫
[ε,λε]

φ(t)

t
dt =

∫
[ε,λε]

φ(t)− φ(0)

t
dt+ φ(0)

∫ λε

ε

dt

t
=

∫
[ε,λε]

φ(t)− φ(0)

t
dt+ φ(0) log λ.

Finally, since ∣∣∣∣∣
∫
[ε,λε]

φ(t)− φ(0)

t
dt

∣∣∣∣∣ ≤
∫
[ε,λε]

∣∣∣∣φ(t)− φ(0)

t

∣∣∣∣ dt ≤ λε∥φ′∥L∞
ε→0−−−→ 0,

we obtain that Tλ = p. v. 1t − log λδ0 and hence Tλ ∈ S ′(R).

Exercise 2.6. ♣
Let 1 < p < ∞ and (uj)j∈N ⊂ Lp(R) be a sequence of functions such that uj ⇀ u in S ′(R)
for a function u ∈ Lp(R).
(a) Show that

uj ⇀ u in Lp(Rn) ⇐⇒ ∥uj∥Lp ≤ C for some constant C > 0.

Solution: The “⇒” part follows from the Banach–Steinhaus theorem: if q denotes the conjugate
exponent of p, for each f ∈ Lq(R) we have that ⟨uj , f⟩ is converging, hence bounded, and therefore
uj are uniformly bounded as linear functionals Lq → R, which gives that

∥uj∥Lp = ∥uj∥(Lq)∗ ≤ C.
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For the “⇐” diretion, observe first that by the lower semicontinuity of the norms, ∥u∥Lp ≤ C too.
Indeed we have that

∥u∥Lp = ∥u∥(Lq)∗ = sup
φ∈S(R)

⟨u, φ⟩
∥φ∥Lq

= sup
φ∈S(R)

lim sup
j→∞

⟨uj , φ⟩
∥φ∥Lq

≤ C

thanks to the density of S in Lq.

Now fix f ∈ Lq, let ε > 0 and choose φ ∈ S(R) be such that ∥f − φ∥Lq ≤ ε/3C (which exists by
the density of Schwartz functions). Then let j0 be large enough so that |⟨uj , φ⟩ − ⟨u, φ⟩| ≤ ε/3 for
all j ≥ j0. Finally, for all such j we have

|⟨uj , f⟩ − ⟨u, f⟩| ≤ |⟨uj , f − φ⟩|+ |⟨uj , φ⟩ − ⟨u, φ⟩|+ |⟨u, φ− f⟩|

≤ C∥f − φ∥Lq +
ε

3
+ C∥φ− f∥Lq ≤ ε.

(b) For each 1 < p < ∞, construct one such sequence that does not satisfy the two equivalent
conditions from part (a), that is, uj, u ∈ Lp(R) such that uj ⇀ u in S ′ but not in Lp.

Solution: There are many possible constructions, one is as follows: let uj = j(χ[0,j−1] −χ[−j−1,0]),
so that

∥uj∥Lp = j

(
2

j

)1/p

= 21/pj1−1/p j→∞−−−→ ∞

for every 1 < p <∞. However, given any φ ∈ S(Rn),

⟨uj , φ⟩ = j

(∫ 1/j

0
φ(t) dt−

∫ 0

−1/j
φ(t) dt

)
=

∫ 1

0
φ

(
x

j

)
dx−

∫ 0

−1
φ

(
x

j

)
dx

j→∞−−−→ φ(0)−φ(0) = 0.

This shows that uj ⇀ 0 in S ′, but by part (a) not in Lp since ∥uj∥Lp is unbounded.

Exercise 2.7.
Consider the evaluation map ev0 : C0

b (R) → R, ev0(φ) = φ(0), where C0
b (R) denotes the

Banach space of all continuous and bounded functions on R.
(a) Show that there exists a linear bounded extension T : L∞(R) → R of ev0.

Solution: This is an immediate consequence of Hahn–Banach.

(b) Show that any such T ∈ L∞(R)∗ does not correspond to any function in L1(R). As a
result, the embedding L1(R) ↪→ L1(R)∗∗ = L∞(R)∗ is far from being surjective.

Solution: We simply show that there is no function f ∈ L1(R) such that
∫
fφ = φ(0) for every φ ∈

Cc(R). Indeed, by a standard argument using bump functions, f should vanish almost everywhere
on any open set U not containing 0, thus f ≡ 0 almost everywhere, which is a contradiction.
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