Exercise 2.1. \bigstar

Show that the following spaces admit natural structures of Fréchet spaces:

(a) $L^p_{\text{loc}}(\mathbb{R}^n)$.

Solution: For each $k \in \mathbb{N}$ let $\mathcal{N}_k(f) := ||f||_{L^p(B_k)}$, where $B_k = B_k(0) \subset \mathbb{R}^n$. Then clearly $\mathcal{N}_k(f) \leq \mathcal{N}_{k+1}(f) \forall k$ and $f \equiv 0$ (a.e.) iff $\mathcal{N}_k(f) = 0 \forall k$. Also, if (f_j) is Cauchy with respect to each \mathcal{N}_k , then $f_j \to f^{(k)}$ in $L^p(B_k)$ for some $f^{(k)} \in L^p(B_k)$ thanks to the completeness of the L^p spaces. By the uniqueness of the limit, the functions $f^{(k)}$ define a global function $f \in L^p_{loc}(\mathbb{R}^n)$, and by the characterization of convergence, $f_j \to f$ in the induced distance.

(b) $C^{\infty}(\overline{\Omega})$, where Ω is a bounded open set in \mathbb{R}^n . Recall that this space is defined as the space of functions $f \in C^{\infty}(\Omega)$ such that each $\partial^{\alpha} f$ extends continuously to $\overline{\Omega}$.

Solution: For each $k \in \mathbb{N}$ let $\mathcal{N}_k(f) := ||f||_{C^k(\overline{\Omega})}$. Then clearly $\mathcal{N}_k(f) \leq \mathcal{N}_{k+1}(f) \forall k$ and $f \equiv 0$ iff $\mathcal{N}_0(f) = 0$. Also, if (f_j) is Cauchy with respect to each \mathcal{N}_k , then $f_j \to f^{(k)}$ in $C^k(\overline{\Omega})$ for some $f^{(k)} \in C^k(\overline{\Omega})$ thanks to the completeness of the space $C^k(\overline{\Omega})$. By the uniqueness of the limit, the functions $f^{(k)}$ agree and thus $f_j \to f$ in all the seminorms (and hence in the induced distance) for a function $f \in C^\infty(\overline{\Omega})$.

(c) $C^{\infty}(\mathbb{R}^n)$, where we do not assume any global bound on f or its derivatives.

Solution: For each $k \in \mathbb{N}$ let $\mathcal{N}_k(f) := \|f\|_{C^k(\overline{B_k})}$. Then clearly $\mathcal{N}_k(f) \leq \mathcal{N}_{k+1}(f) \forall k$ and $f \equiv 0$ iff $\mathcal{N}_k(f) = 0 \forall k$. Also, if (f_j) is Cauchy with respect to each \mathcal{N}_k , then $f_j \to f^{(k)}$ in $C^k(\overline{B_k})$ for some $f^{(k)} \in C^k(\overline{B_k})$ thanks to the completeness of the space $C^k(\overline{B_k})$. By the uniqueness of the limit, the functions $f^{(k)}$ agree and thus, for each k, $\mathcal{N}_k(f_j - f) \to 0$ (and hence $f_j \to f$ in the induced distance) for a function $f \in C^{\infty}(\mathbb{R}^n)$.

(d) The Schwartz space $\mathcal{S}(\mathbb{R}^n)$.

Solution: We use the norms \mathcal{N}_k introduced in the lecture. Clearly $\mathcal{N}_k(f) \leq \mathcal{N}_{k+1}(f) \forall k$ and $f \equiv 0$ iff $\mathcal{N}_0(f) = 0$. Let (f_j) be a Cauchy sequence with respect to the induced distance. Given multiindices α and β , it follows that the functions $x^{\alpha}\partial^{\beta}f_j$ are a Cauchy sequence in $C_b(\mathbb{R}^n) = L^{\infty} \cap C^0$ and hence converge uniformly to some function $f_{\alpha,\beta}$. Letting $f := f_{0,0} \in C_b(\mathbb{R}^n)$, by uniqueness of the limit, we have the compatibility conditions that $f_{\alpha,\beta} = x^{\alpha}\partial^{\beta}f$. Recalling the definition of \mathcal{N}_k we see that in fact $\mathcal{N}_k(f_j - f) \to 0$ for each k, which proves the completeness.

Exercise 2.2. \bigstar

Show that $C_c^{\infty}(\mathbb{R}^n)$ does **not** admit the structure of a Fréchet space. More precisely, prove the following statement: suppose that $(\mathcal{N}_p)_{p\in\mathbb{N}}$ is a family of seminorms on $C_c^{\infty}(\mathbb{R}^n)$ and ddenotes the induced distance. Assume that for every sequence $(\varphi_j)_{j\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R}^n)$ converging to some $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ with respect to d, also $\varphi_j \to \varphi$ pointwise¹. Then show that $(C_c^{\infty}(\mathbb{R}^n), d)$ cannot be complete.

¹One has to assume some kind of compatibility between the norms \mathcal{N}_p and the usual convergence of functions, otherwise $C_c^{\infty}(\mathbb{R}^n)$ is just an abstract vector space and one can put even a Banach structure on it. In fact, it is enough to just require that $\varphi_j \rightharpoonup \varphi$ in the sense of distributions.

Solution: Fix a sequence of nonnegative functions $\varphi_k \in C_c^{\infty}(\mathbb{R}^n)$ such that $\varphi_k > 0$ on B_k , and choose a sequence of positive real numbers a_k such that

$$\mathcal{N}_p(a_k\varphi_k) \le 2^{-k} \quad \text{for } 1 \le p \le k.$$

Then the sequence $\psi_k := \sum_{j \leq k} a_j \varphi_j$ is Cauchy with respect to all the \mathcal{N}_p seminorms: for every p, if we take $m \geq n \geq p$ then

$$\mathcal{N}_p(a_n\varphi_n + \dots + a_m\varphi_m) \le \mathcal{N}_p(a_n\varphi_n) + \dots + \mathcal{N}_p(a_m\varphi_m) \le 2^{-n} + \dots + 2^{-m} \le 2^{-n+1} \xrightarrow{n \to \infty} 0.$$

Hence (ψ_k) is Cauchy with respect to d, and if we assume that $(C_c^{\infty}(\mathbb{R}^n), d)$ is complete, it converges to some function $\psi \in C_c^{\infty}(\mathbb{R}^n)$ with respect to the distance d. It follows from the compatibility assumption that $\psi_k \to \psi$ also pointwise. Pick R > 0 such that $\sup \psi \subset B_R$ and a point $x \in \mathbb{R}^n \setminus B_R$. Then, by definition, $\psi_k(x)$ is an increasing sequence of positive numbers and cannot converge to $\psi(x) = 0$.

Exercise 2.3.

(a) Show that the function $f(x) = e^x$ is not a tempered distribution, i.e. that there exists no $T \in \mathcal{S}'(\mathbb{R})$ such that $\langle T, \varphi \rangle = \int_{\mathbb{R}} f(x)\varphi(x) \, dx$ for every $\varphi \in C_c^{\infty}(\mathbb{R})$.

Solution: Suppose that such $T \in \mathcal{S}'(\mathbb{R})$ exists and is of order m. Fix $\varphi \in C_c^{\infty}(\mathbb{R})$ and let $\varphi_a(y) := \varphi(y-a)$ for a > 0. Then

$$\mathcal{N}_m(\varphi_a) = \sup_{y \in \mathbb{R}} \max_{0 \le i, j \le m} |y|^i |\partial^j \varphi_a(y)| = \sup_{x \in \operatorname{supp} \varphi} \max_{0 \le i, j \le m} |a + x|^i |\partial^j \varphi(x)| \le C(1+a)^m,$$

where C depends on φ and m. Then

$$\int_{\mathbb{R}} e^{y} \varphi_{a}(y) \, \mathrm{d}y = \int_{\mathbb{R}} e^{x+a} \varphi(x) \, \mathrm{d}x = e^{a} \int_{\mathbb{R}} e^{x} \varphi(x) \, \mathrm{d}x = \lambda e^{a},$$

where $\lambda > 0$ if we choose φ nonnegative. This clearly cannot be bounded by a constant times $\mathcal{N}_m(\varphi_a)$ for a > 0 large enough.

(b) Show that the function $g(x) = e^x \cos(e^x)$ does define a tempered distribution (in the above sense).

Solution: It is clear that g(x) is the derivative of $h(x) = \sin(e^x)$, which is in L^{∞} and hence defines a tempered distribution. Since $h \in C^1(\mathbb{R})$ and the distributional derivative agrees with the classical derivative for $C^1 \cap S'$ functions, $g = h' \in S'$.

Exercise 2.4.

Let $T \in \mathcal{S}'(\mathbb{R}^n)$ be a tempered distribution and let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be such that $\varphi \equiv 0$ on supp T. Is it true that $\langle T, \varphi \rangle = 0$? **Solution:** No! Just take $T = -\delta'$ and $\varphi(t) = t\chi(t)$, where $\chi \in C_c^{\infty}((-2,2))$ is a cutoff function with $\chi \equiv 1$ on [-1,1]. Then supp $T = \{0\}$ and $\varphi(0) = 0$, but $\langle T, \varphi \rangle = \varphi'(0) = 1$.

Exercise 2.5. For $\lambda > 0$, let $T_{\lambda} : \mathcal{S}(\mathbb{R}) \to \mathbb{R}$ be defined by

$$\langle T_{\lambda}, \varphi \rangle := \lim_{\varepsilon \to 0} \int_{(-\infty, -\varepsilon] \cup [\lambda \varepsilon, \infty)} \frac{\varphi(t)}{t} \, \mathrm{d}t.$$

Show that T_{λ} is a tempered distribution and relate it to $T_1 = p. v. \frac{1}{t}$.

Solution: Suppose that $\lambda > 1$ (otherwise the proof is analogous). Then

$$\langle T_{\lambda}, \varphi \rangle = \lim_{\varepsilon \to 0} \int_{(-\infty, -\varepsilon] \cup [\lambda\varepsilon, \infty)} \frac{\varphi(t)}{t} \, \mathrm{d}t = \lim_{\varepsilon \to 0} \int_{(-\infty, -\varepsilon] \cup [\varepsilon, \infty)} \frac{\varphi(t)}{t} \, \mathrm{d}t - \int_{[\varepsilon, \lambda\varepsilon]} \frac{\varphi(t)}{t} \, \mathrm{d}t.$$

The first integral converges to $\langle p. v. \frac{1}{t}, \varphi \rangle$ and for the second one we have

$$\int_{[\varepsilon,\lambda\varepsilon]} \frac{\varphi(t)}{t} \, \mathrm{d}t = \int_{[\varepsilon,\lambda\varepsilon]} \frac{\varphi(t) - \varphi(0)}{t} \, \mathrm{d}t + \varphi(0) \int_{\varepsilon}^{\lambda\varepsilon} \frac{\mathrm{d}t}{t} = \int_{[\varepsilon,\lambda\varepsilon]} \frac{\varphi(t) - \varphi(0)}{t} \, \mathrm{d}t + \varphi(0) \log \lambda.$$

Finally, since

$$\left| \int_{[\varepsilon,\lambda\varepsilon]} \frac{\varphi(t) - \varphi(0)}{t} \, \mathrm{d}t \right| \le \int_{[\varepsilon,\lambda\varepsilon]} \left| \frac{\varphi(t) - \varphi(0)}{t} \right| \, \mathrm{d}t \le \lambda\varepsilon \|\varphi'\|_{L^{\infty}} \xrightarrow{\varepsilon \to 0} 0,$$

we obtain that $T_{\lambda} = p. v. \frac{1}{t} - \log \lambda \delta_0$ and hence $T_{\lambda} \in \mathcal{S}'(\mathbb{R})$.

Exercise 2.6.

Let $1 and <math>(u_j)_{j \in \mathbb{N}} \subset L^p(\mathbb{R})$ be a sequence of functions such that $u_j \rightharpoonup u$ in $\mathcal{S}'(\mathbb{R})$ for a function $u \in L^p(\mathbb{R})$.

(a) Show that

$$u_j \rightharpoonup u$$
 in $L^p(\mathbb{R}^n) \iff ||u_j||_{L^p} \le C$ for some constant $C > 0$.

Solution: The " \Rightarrow " part follows from the Banach–Steinhaus theorem: if q denotes the conjugate exponent of p, for each $f \in L^q(\mathbb{R})$ we have that $\langle u_j, f \rangle$ is converging, hence bounded, and therefore u_j are uniformly bounded as linear functionals $L^q \to \mathbb{R}$, which gives that

$$||u_j||_{L^p} = ||u_j||_{(L^q)^*} \le C.$$

For the " \Leftarrow " direction, observe first that by the lower semicontinuity of the norms, $||u||_{L^p} \leq C$ too. Indeed we have that

$$\|u\|_{L^p} = \|u\|_{(L^q)^*} = \sup_{\varphi \in \mathcal{S}(\mathbb{R})} \frac{\langle u, \varphi \rangle}{\|\varphi\|_{L^q}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R})} \limsup_{j \to \infty} \frac{\langle u_j, \varphi \rangle}{\|\varphi\|_{L^q}} \le C$$

thanks to the density of \mathcal{S} in L^q .

Now fix $f \in L^q$, let $\varepsilon > 0$ and choose $\varphi \in \mathcal{S}(\mathbb{R})$ be such that $||f - \varphi||_{L^q} \leq \varepsilon/3C$ (which exists by the density of Schwartz functions). Then let j_0 be large enough so that $|\langle u_j, \varphi \rangle - \langle u, \varphi \rangle| \leq \varepsilon/3$ for all $j \geq j_0$. Finally, for all such j we have

$$\begin{aligned} |\langle u_j, f \rangle - \langle u, f \rangle| &\leq |\langle u_j, f - \varphi \rangle| + |\langle u_j, \varphi \rangle - \langle u, \varphi \rangle| + |\langle u, \varphi - f \rangle| \\ &\leq C \|f - \varphi\|_{L^q} + \frac{\varepsilon}{3} + C \|\varphi - f\|_{L^q} \leq \varepsilon. \end{aligned}$$

(b) For each $1 , construct one such sequence that does not satisfy the two equivalent conditions from part (a), that is, <math>u_j, u \in L^p(\mathbb{R})$ such that $u_j \rightharpoonup u$ in \mathcal{S}' but not in L^p .

Solution: There are many possible constructions, one is as follows: let $u_j = j(\chi_{[0,j^{-1}]} - \chi_{[-j^{-1},0]})$, so that

$$||u_j||_{L^p} = j\left(\frac{2}{j}\right)^{1/p} = 2^{1/p}j^{1-1/p} \xrightarrow{j \to \infty} \infty$$

for every $1 . However, given any <math>\varphi \in \mathcal{S}(\mathbb{R}^n)$,

$$\langle u_j, \varphi \rangle = j \left(\int_0^{1/j} \varphi(t) \, \mathrm{d}t - \int_{-1/j}^0 \varphi(t) \, \mathrm{d}t \right) = \int_0^1 \varphi\left(\frac{x}{j}\right) \, \mathrm{d}x - \int_{-1}^0 \varphi\left(\frac{x}{j}\right) \, \mathrm{d}x \xrightarrow{j \to \infty} \varphi(0) - \varphi(0) = 0.$$

This shows that $u_j \rightharpoonup 0$ in \mathcal{S}' , but by part (a) not in L^p since $||u_j||_{L^p}$ is unbounded.

Exercise 2.7.

Consider the evaluation map $ev_0 : C_b^0(\mathbb{R}) \to \mathbb{R}$, $ev_0(\varphi) = \varphi(0)$, where $C_b^0(\mathbb{R})$ denotes the Banach space of all continuous and bounded functions on \mathbb{R} .

(a) Show that there exists a linear bounded extension $T: L^{\infty}(\mathbb{R}) \to \mathbb{R}$ of ev_0 .

Solution: This is an immediate consequence of Hahn–Banach.

(b) Show that any such $T \in L^{\infty}(\mathbb{R})^*$ does not correspond to any function in $L^1(\mathbb{R})$. As a result, the embedding $L^1(\mathbb{R}) \hookrightarrow L^1(\mathbb{R})^{**} = L^{\infty}(\mathbb{R})^*$ is far from being surjective.

Solution: We simply show that there is no function $f \in L^1(\mathbb{R})$ such that $\int f\varphi = \varphi(0)$ for every $\varphi \in C_c(\mathbb{R})$. Indeed, by a standard argument using bump functions, f should vanish almost everywhere on any open set U not containing 0, thus $f \equiv 0$ almost everywhere, which is a contradiction.