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Exercise 2.1. %
Show that the following spaces admit natural structures of Fréchet spaces:

(a) Lfoc(Rn)'

Solution: For each k € N let Ni(f) := | fllze(p,), Where By = Bi(0) C R". Then clearly
Ni(f) < Ny (f)VEk and f =0 (ae.) iff Ni(f) = 0Vk. Also, if (f;) is Cauchy with respect to each
N, then f; — f%) in LP(By,) for some f*) € LP(By,) thanks to the completeness of the LP spaces.
By the uniqueness of the limit, the functions f**) define a global function f € Lfoc (R™), and by the
characterization of convergence, f; — f in the induced distance.

(b) C>=(2), where € is a bounded open set in R™. Recall that this space is defined as the
space of functions f € C*°(Q2) such that each 0*f extends continuously to (2.

Solution: For each k € N let Ni(f) := || fllcrm- Then clearly Ny(f) < Ny41(f)Vk and f =0
iff No(f) = 0. Also, if (f;) is Cauchy with respect to each N, then f; — f*) in C*(Q) for some
f%®) e C*(Q) thanks to the completeness of the space C*(Q). By the uniqueness of the limit, the
functions f*) agree and thus fj — f in all the seminorms (and hence in the induced distance) for

a function f € C*(Q).
(c) C*(R™), where we do not assume any global bound on f or its derivatives.

Solution: For each k € N let Ni(f) := HfHC’k(BTC)' Then clearly Ni(f) < Nir1(f)Vk and f =0 iff
Ni(f) = 0Vk. Also, if (f;) is Cauchy with respect to each N, then f; — f*) in C*(By) for some
f%®) e C*(By,) thanks to the completeness of the space C*(B;). By the uniqueness of the limit,
the functions f*) agree and thus, for each £k, Ni(f; = f) — 0 (and hence f; — f in the induced
distance) for a function f € C*°(R"™).

(d) The Schwartz space S(R™).

Solution: We use the norms N, introduced in the lecture. Clearly Ni(f) < Niy1(f)Vk and f =0
iff Mo(f) = 0. Let (fj) be a Cauchy sequence with respect to the induced distance. Given multi-
indices a and $3, it follows that the functions 9" fj are a Cauchy sequence in Cy(R"™) = L*>® N o
and hence converge uniformly to some function f, g. Letting f := fo,0 € Cp(R"™), by uniqueness of
the limit, we have the compatibility conditions that f, 3 = z®9P f. Recalling the definition of N},
we see that in fact Ny (f; — f) — 0 for each k, which proves the completeness.

Exercise 2.2. %

Show that C°(R™) does not admit the structure of a Fréchet space. More precisely, prove
the following statement: suppose that (N,) .y is a family of seminorms on C2°(R") and d
denotes the induced distance. Assume that for every sequence (¢;);en C C°(R™) converging
to some ¢ € C°(R™) with respect to d, also ¢; — ¢ pointwise'. Then show that (C2°(R"), d)
cannot be complete.

1One has to assume some kind of compatibility between the norms N, and the usual convergence of
functions, otherwise C°(R™) is just an abstract vector space and one can put even a Banach structure on
it. In fact, it is enough to just require that ¢; — ¢ in the sense of distributions.
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Solution: Fix a sequence of nonnegative functions ¢; € C2°(R™) such that ¢ > 0 on By, and
choose a sequence of positive real numbers a; such that

Np(agpr) < ok for1 <p<k.

Then the sequence 1y 1= > j<k jPj 18 Cauchy with respect to all the NV, seminorms: for every p,
if we take m > n > p then

Np(antpn 4+ .4 am(Pm) < Np(an@n) + ... +Np(am¢m) <92y 2_n+1 n—00 0.

Hence (1)) is Cauchy with respect to d, and if we assume that (C°(R™), d) is complete, it converges
to some function ¢ € C°(R™) with respect to the distance d. It follows from the compatibility
assumption that ¢ — 1 also pointwise. Pick R > 0 such that supp ¢ C Bpr and a point € R™\ Bp.
Then, by definition, 1, (x) is an increasing sequence of positive numbers and cannot converge to

Y(x) =0.

Exercise 2.3.

(a) Show that the functlon f ( = e’ 1s not a tempered distribution, i.e. that there exists
no 7' € §'(R) such that ( fR z) dx for every ¢ € C°(R).

Solution: Suppose that such 7' € §'(R ) exists and is of order m. Fix ¢ € C°(R) and let ¢,(y) :=
©(y — a) for a > 0. Then

Nin(pa) =sup max |y['["a(y)| = sup  max a+az|'|0¢(z)] < C(1+a)™
y€eR 0<i,5<m x€supp ¢ 0<8,5<m

where C' depends on ¢ and m. Then

/ e¥oq(y) dy = / e p(x) de = e / e“p(x) dr = Ae?,
R R R

where A > 0 if we choose ¢ nonnegative. This clearly cannot be bounded by a constant times
N (@q) for a > 0 large enough.

(b) Show that the function g(z) = e” cos(e”) does define a tempered distribution (in the
above sense).

Solution: It is clear that g(x) is the derivative of h(x) = sin(e”), which is in L> and hence defines
a tempered distribution. Since h € C'(R) and the distributional derivative agrees with the classical
derivative for C' NS’ functions, g = b’ € S'.

Exercise 2.4.
Let T' € 8’'(R™) be a tempered distribution and let ¢ € S(R™) be such that ¢ = 0 on supp 7.
Is it true that (7', p) = 07
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Solution: No! Just take T' = —§’ and (t) = tx(t), where x € C°((—2,2)) is a cutoff function
with x =1 on [—1,1]. Then suppT = {0} and ¢(0) = 0, but (T, ¢) = ¢'(0) = 1.

Exercise 2.5.
For A > 0, let T\ : S(R) — R be defined by

(T, p) = lim 20) dt.

e=0 ) Lo, —elUpe,oo) T

Show that T) is a tempered distribution and relate it to T} = p.v. %

Solution: Suppose that A > 1 (otherwise the proof is analogous). Then

e=0 (—00,—¢]U[Ae,00) t e—0 (—o00,—¢]Ule,00) t [e,2e] t

The first integral converges to (p.v. %, ¢) and for the second one we have

o)y [ o0 90) Yd el - pl0)
/[E,AE] ——dt = /[E,)\E] — dt + 90(0)/ - = /[67/\81 ; dt + »(0) log A.

t .t
Finally, since

At < Aell¢'|| e =5 0,

p(t) — ¢(0) ‘
t

/ p(t) —2(0)
[e,\e] t

<)
[e,Ae]

we obtain that Ty = p.v. % —log Moy and hence Ty € §'(R).

Exercise 2.6. &
Let 1 < p < oo and (uj)jen C LP(R) be a sequence of functions such that u; — u in §'(R)
for a function u € LP(R).

(a) Show that

u; = win LP(R") = |lujllr < C for some constant C' > 0.

Solution: The “=" part follows from the Banach—Steinhaus theorem: if ¢ denotes the conjugate
exponent of p, for each f € LY(R) we have that (u;, f) is converging, hence bounded, and therefore
u; are uniformly bounded as linear functionals L? — R, which gives that

lujlle = llujllzay < C.
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For the “«<” diretion, observe first that by the lower semicontinuity of the norms, ||u|/zr < C too.
Indeed we have that

fullzr = lull oy = sup 22— sup timsup {22 < ¢
ves®) 1PllLe  pes®) jooo  llllLe
thanks to the density of § in LY.

Now fix f € L9, let ¢ > 0 and choose ¢ € S(R) be such that ||f — ¢||L« < /3C (which exists by
the density of Schwartz functions). Then let jo be large enough so that |(u;, p) — (u, )| < /3 for
all j > jo. Finally, for all such 5 we have

(g £) = (u, )] < g, £ — @)+ (w5, 0) — ()] + | {u, 0 — £
<OIf = pllia+ 5 +Clio = flls <.

(b) For each 1 < p < 00, construct one such sequence that does not satisfy the two equivalent
conditions from part (a), that is, u;, u € LP(R) such that u; = w in &’ but not in L”.

Solution: There are many possible constructions, one is as follows: let u; = j(x[0;-1] — X[—j-1.,0])
so that

1
;]| e = j 2 " 9l/p;1-1/p I
jliLe =J j = J — X

for every 1 < p < oo. However, given any ¢ € S(R"),

(uj. ) = J (/Ol/j so(t)dt—/ol/jw(t)dt) = [o(3) [ o (%) w2 0w =0

This shows that u; — 0 in &', but by part (a) not in L? since ||u;|z» is unbounded.

Exercise 2.7.

Consider the evaluation map evqy : CP(R) — R, evg(¢) = ¢(0), where CP(R) denotes the
Banach space of all continuous and bounded functions on R.

(a) Show that there exists a linear bounded extension 7" : L*(R) — R of evy.

Solution: This is an immediate consequence of Hahn—Banach.

(b) Show that any such 7' € L°°(R)* does not correspond to any function in L'(R). As a
result, the embedding L'(R) — L'(R)** = L°°(R)* is far from being surjective.

Solution: We simply show that there is no function f € L*(R) such that [ fo = ¢(0) for every ¢ €
C¢(R). Indeed, by a standard argument using bump functions, f should vanish almost everywhere
on any open set U not containing 0, thus f = 0 almost everywhere, which is a contradiction.
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