Exercise 3.1. ★

Let $T \in \mathcal{E}'(\mathbb{R}^n)$ and let $p \in \mathbb{N}$ be the order of T. Consider moreover $\varphi \in C^{\infty}(\mathbb{R}^n)$, such that $\partial^{\alpha} \varphi = 0$ on supp T for any α such that $|\alpha| \leq p$. Show that

 $\langle T, \varphi \rangle = 0.$

Hint: denoting $K := \operatorname{supp} T$ and $K_{\delta} := \{x \in \mathbb{R}^n : \operatorname{dist}(x, K) \leq \delta\}$, define for every small enough $\varepsilon > 0$ the function $\psi_{\varepsilon} := \mathbb{1}_{K_{2\varepsilon}} \star \chi_{\varepsilon}$, where $(\chi_{\varepsilon})_{\varepsilon>0}$ is a standard family of mollifiers, and given any $\varphi \in C^{\infty}(\mathbb{R}^n)$, investigate the behavior of $\langle T, \varphi \psi_{\varepsilon} \rangle$ as $\varepsilon \to 0$.

Solution:

Let $K := \operatorname{supp} T$, which is compact, and define $\mathbb{1}_{K_{2\varepsilon}}, \chi_{\varepsilon}$ and ψ_{ε} as in the hint. Here we are assuming that

$$\chi \in C_c^{\infty}(B_1(0)), \quad \int_{\mathbb{R}^n} \chi = 1 \quad \text{and} \quad \chi_{\varepsilon}(s) = \frac{1}{\varepsilon^n} \chi\left(\frac{s}{\varepsilon}\right)$$

We have that $\psi_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ and from the definition of the convolution operator we have

$$\operatorname{supp}\left(\mathbb{1}_{K_{2\varepsilon}} \star \chi_{\varepsilon}\right) \subset \operatorname{supp}\left(\mathbb{1}_{K_{2\varepsilon}}\right) + \operatorname{supp}\left(\chi_{\varepsilon}\right) \subset \operatorname{supp}\left(\mathbb{1}_{K_{3\varepsilon}}\right) \ .$$

Hence we deduce

$$\psi_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^n)$$

We claim that $\psi_{\varepsilon} \equiv 1$ on K_{ε} . Indeed, let $x \in K_{\varepsilon}$, there holds

$$\psi_{\varepsilon}(x) = \int_{\mathbb{R}^n} \mathbb{1}_{K_{2\varepsilon}}(y) \frac{1}{\varepsilon^n} \chi\left(\frac{x-y}{\varepsilon}\right) dy$$

Observe that $\operatorname{supp}\left(\chi\left(\frac{\cdot}{\varepsilon}\right)\right) \subset B_{\varepsilon}(0)$. Hence, for $\chi\left(\frac{x-y}{\varepsilon}\right) \neq 0$ there need to be $|x-y| < \varepsilon$ which implies $\operatorname{dist}(y, K_{\varepsilon}) < \varepsilon$ and hence $y \in K_{2\varepsilon}$. Therefore

$$\psi_{\varepsilon}(x) = \int_{\mathbb{R}^n} \frac{1}{\varepsilon^n} \chi\left(\frac{x-y}{\varepsilon}\right) dy = 1$$

which concludes the proof of the claim.

We decompose φ as follows

$$\varphi = \varphi \, \psi_{\varepsilon} + (1 - \psi_{\varepsilon}) \varphi.$$

From the claim we just proved we deduce supp $(1 - \psi_{\varepsilon})\varphi \subset K_{\varepsilon}^{c}$. Hence $\langle T, (1 - \psi_{\varepsilon})\varphi \rangle = 0$ since supp T = K. Thus we have $\langle T, \varphi \rangle = \langle T, \varphi \psi_{\varepsilon} \rangle$.

We claim that for any $\alpha \in \mathbb{N}^n$ there exists of $C_\alpha > 0$ such that

$$\|\partial^{\alpha}\psi_{\varepsilon}\|_{\infty} \leq C_{\alpha}\varepsilon^{-|\alpha|}:$$

Indeed, we have on one hand

$$\partial^{\alpha}(\mathbb{1}_{K_{2\varepsilon}} \star \chi_{\varepsilon}) = \mathbb{1}_{K_{2\varepsilon}} \star \partial^{\alpha} \chi_{\varepsilon} ,$$

and on the other hand a direct computation gives

$$\partial^{\alpha}\chi_{\varepsilon} = \varepsilon^{-n-|\alpha|}(\partial^{\alpha}\chi) \Longrightarrow \|\partial^{\alpha}\chi_{\varepsilon}\|_{1} = \varepsilon^{-|\alpha|}C_{\alpha}$$

Combining these two facts we obtain

$$\begin{aligned} \left|\partial^{\alpha}\psi_{\varepsilon}(x)\right|_{\infty} &= \left\|\int_{\mathbb{R}^{n}}\mathbbm{1}_{K_{2\varepsilon}}(y)\frac{1}{\varepsilon^{n}}\partial^{\alpha}_{x}\chi\left(\frac{x-y}{\varepsilon}\right) dy\right\|_{\infty} \\ &\leq \|\mathbbm{1}_{K_{2\varepsilon}}\|_{\infty} \|\partial^{\alpha}\chi_{\varepsilon}\|_{1} \leq \varepsilon^{-|\alpha|}C_{\alpha} .\end{aligned}$$

This implies the claim.

Let $x \in K_{3\varepsilon}$, we consider $y \in K$ such that $|x - y| \leq 4\varepsilon$. Taylor expansion at y gives for any γ with $|\gamma| \leq p$ the existence of ξ in the segment [x, y] such that

$$\partial^{\gamma}\varphi(x) = \partial^{\gamma}\varphi(y) + \sum_{\substack{|\alpha| \le p \\ \gamma < \alpha}} \partial^{\alpha}\varphi(y) \ \frac{h^{\alpha - \gamma}}{(\alpha - \gamma)!} + \sum_{\substack{|\beta| = p+1}} \partial^{\beta}\varphi(\xi) \ \frac{h^{\beta - \gamma}}{(\beta - \gamma)!}$$

where

$$\frac{1}{\alpha!} = \frac{1}{\alpha_1! \dots \alpha_n!}$$

and

$$x-y=(h_1,\ldots,h_n), \ h^{\alpha}=h_1^{\alpha_1}\cdots h_n^{\alpha_n}$$

From the hypothesis we have for any $y \in K = \operatorname{supp}(T) \partial^{\gamma} \varphi(y) = 0 \quad \forall |\gamma| \leq p$. Combining this hypothesis with the Taylor expansion we obtain

$$\|\partial^{\gamma}\varphi\|_{L^{\infty}(K_{3\varepsilon})} \leq C_{\varphi} \varepsilon^{p+1-|\gamma|}$$

Finally we bound

$$\begin{split} |\langle T, \varphi \rangle| &= |\langle T, \varphi \psi_{\varepsilon} \rangle| \leq C \sum_{|\alpha| \leq p} \|\partial^{\alpha}(\varphi \psi_{\varepsilon})\|_{L^{\infty}(K_{3\varepsilon})} \\ &\leq C \cdot \sum_{|\alpha| \leq p} \sum_{|\gamma| \leq |\alpha|} \|\partial^{\gamma} \varphi\|_{L^{\infty}(K_{3\varepsilon})} \|\partial^{\alpha-\gamma} \psi_{\varepsilon}\|_{\infty} C_{\gamma} \\ &\leq C \sum_{|\alpha| \leq p} C'' \varepsilon^{p+1-|\alpha|} \leq C_{\varphi,T} \varepsilon \; . \end{split}$$

This holds for any arbitrary small ε hence we deduce $|\langle T, \varphi \rangle| = 0$.

Exercise 3.2. \bigstar

We have seen in the lecture that for every $T \in \mathcal{S}'(\mathbb{R}^n)$, there is a well-defined map

$$\varphi \in \mathcal{S}(\mathbb{R}^n) \longmapsto T \star \varphi \in C^{\infty}(\mathbb{R}^n).$$

(a) Show that this map is continuous as a linear map between Fréchet spaces.

Solution: Suppose that the order of T is p and let $k \in \mathbb{N}$. Then

$$\begin{split} \sup_{\substack{x \in B_k \\ |\alpha| \le k}} |\partial^{\alpha} (T \star \varphi)(x)| &= \sup_{\substack{x \in B_k \\ |\alpha| \le k}} |(T \star \partial^{\alpha} \varphi)(x)| = \sup_{\substack{x \in B_k \\ |\alpha| \le k}} |\langle T, (\partial^{\alpha} \varphi)(x - \cdot) \rangle| \\ &\leq \sup_{\substack{x \in B_k \\ |\alpha| \le k}} C\mathcal{N}_p((\partial^{\alpha} \varphi)(x - \cdot)) \\ &\leq C \sup_{\substack{x \in B_k \\ |\alpha| \le k}} \sup_{\substack{y \in \mathbb{R}^n \\ |\alpha| \le k}} (1 + |y|)^p |\partial^{\alpha + \beta} \varphi(x - y)|. \end{split}$$

Now observe that for $x \in B_k$ and $y \in \mathbb{R}^n$, $1+|y| \le 1+|x|+|x-y| \le k+1+|x-y| \le (k+1)(1+|x-y|)$, hence

$$\sup_{\substack{x \in B_k \\ |\alpha| \le k}} |\partial^{\alpha} (T \star \varphi)(x)| \le C \sup_{\substack{z \in \mathbb{R}^n \\ |\gamma| \le k+p}} (1+|z|)^p |\partial^{\gamma} \varphi(z)| \le C \mathcal{N}_{k+p}(\varphi).$$

(b) Show that, if in addition $T \in \mathcal{E}'(\mathbb{R}^n)$, then $T \star \varphi \in \mathcal{S}(\mathbb{R}^n)$.

(c) In this case, prove that moreover the map is continuous into the space $\mathcal{S}(\mathbb{R}^n)$.

Solution: Suppose that T is supported in B_R and has order p. Then for each $k \in \mathbb{N}$,

$$\mathcal{N}_{k}(T \star \varphi) = \sup_{\substack{x \in \mathbb{R}^{n} \\ |\alpha| \leq k}} (1+|x|)^{k} |\partial^{\alpha}(T \star \varphi)(x)| = \sup_{\substack{x \in \mathbb{R}^{n} \\ |\alpha| \leq k}} (1+|x|)^{k} |\langle T, (\partial^{\alpha}\varphi)(x-\cdot) \rangle|$$
$$= \sup_{\substack{x \in \mathbb{R}^{n} \\ |\alpha| \leq k}} (1+|x|)^{k} C \sup_{\substack{y \in B_{R} \\ |\beta| \leq p}} |(\partial^{\alpha+\beta}\varphi)(x-y)|.$$

Now observe that $1 + |x| \le 1 + |x - y| + |y| \le 1 + r + |x - y| \le (1 + r)(1 + |x - y|)$ if $y \in B_R$, so

$$\mathcal{N}_{k}(T\star\varphi) \leq C \sup_{\substack{z\in\mathbb{R}^{n}\\|\gamma|\leq k+p}} (1+|z|)^{k} |\partial^{\gamma}\varphi(z)| \leq C\mathcal{N}_{k+p}(\varphi).$$

Exercise 3.3.

Recall the definition of the translation operators: for $a \in \mathbb{R}^n$ we first define $\tau_a \varphi(x) = \varphi(x-a)$ for functions $\varphi \in \mathcal{S}(\mathbb{R}^n)$, and then we define by duality $\langle \tau_a T, \varphi \rangle := \langle T, \tau_{-a} \varphi \rangle$ for $T \in \mathcal{S}'(\mathbb{R}^n)$. (a) \bigstar Prove that $\forall T \in \mathcal{S}'(\mathbb{R}^n), \forall \varphi \in \mathcal{S}(\mathbb{R}^n)$ and $\forall a \in \mathbb{R}^n$ it holds:

$$\tau_a(T\star\varphi) = (\tau_a T)\star\varphi = T\star\tau_a\varphi.$$

3 / 6

Solution: One one hand:

$$\tau_a(T\star\varphi)(x) = (T\star\varphi)(x-a) = \langle T,\varphi(x-a-\cdot)\rangle = \langle T,\varphi(x-(a+\cdot))\rangle$$
$$= \langle T,\tau_{-a}(\varphi(x-\cdot))\rangle = \langle \tau_a T,\varphi(x-\cdot)\rangle = ((\tau_a T)\star\varphi)(x).$$

On the other hand:

$$\tau_a(T\star\varphi)(x) = (T\star\varphi)(x-a) = \langle T, \varphi(x-a-\cdot) \rangle = \langle T, (\tau_a\varphi)(x-\cdot) \rangle = (T\star(\tau_a\varphi))(x).$$

(b) Let $U : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ be a linear continuous map commuting with translations, that is, such that for any $a \in \mathbb{R}^n$, $U \circ \tau_a = \tau_a \circ U$. Prove that there exists a $T \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$U\varphi = T \star \varphi \qquad \forall \varphi \in \mathcal{S}(\mathbb{R}^n).$$

Solution: Let $\langle T, \varphi \rangle := (U\check{\varphi})(0)$ for $\varphi \in \mathcal{S}(\mathbb{R}^n)$ (here $\check{\varphi}(x) = \varphi(-x)$). Notice that, owing to the continuity of U, $|(U\check{\varphi})(0)| \leq \mathcal{N}_0(U\check{\varphi}) \leq C\mathcal{N}_p(\check{\varphi}) = C\mathcal{N}_p(\varphi)$, so T is indeed a tempered distribution. We just need to check:

$$U\varphi(a) = (\tau_{-a}(U\varphi))(0) = (U\tau_{-a}\varphi)(0) = \langle T, \widetilde{\tau_{-a}\varphi} \rangle = \langle T, \varphi(a-\cdot) \rangle = (T \star \varphi)(a),$$

where we have used that $\check{\tau_{-a}\varphi}(x) = (\tau_{-a}\varphi)(-x) = \varphi(-x+a) = \varphi(a-x).$

Exercise 3.4.

(a) Determine all the tempered distributions $T \in \mathcal{S}'(\mathbb{R})$ such that tT = 1 (here t is the independent variable of \mathbb{R} and 1 denotes the constant function 1, seen as a distribution).

Solution: Let $P = p.v.\frac{1}{t} \in \mathcal{S}'(\mathbb{R})$; in the lecture we have seen that tP = 1, therefore for any such T it holds that t(P - T) = 0. Given any $\varphi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$, also $\varphi(t)/t$ is in $C_c^{\infty}(\mathbb{R} \setminus \{0\})$, hence

$$\langle P - T, \varphi \rangle = \left\langle P - T, t \frac{\varphi}{t} \right\rangle = \left\langle t(P - T), \frac{\varphi}{t} \right\rangle = 0$$

which shows that $\operatorname{supp}(P-T) \subseteq \{0\}$. Let *m* be the order of P-T; then by the lemma of Schwartz we have that $P-T = \sum_{j=0}^{m} c_j \delta_0^{(j)}$ for some $m \in \mathbb{N}$ and coefficients $c_j \in \mathbb{R}$.

Now take arbitrary coefficients a_1, \ldots, a_m and consider the polynomial $q(t) = \sum_{k=1}^m a_k t^k$, which is in $C^{\infty}(\mathbb{R})$. Since $P - T \in \mathcal{E}'(\mathbb{R})$, we may pair them and get

$$0 = \left\langle t(P-T), \sum_{k=1}^{m} a_k t^{k-1} \right\rangle = \left\langle P-T, \sum_{k=1}^{m} a_k t^k \right\rangle = \left\langle \sum_{j=0}^{m} c_j \delta_0^{(j)}, \sum_{k=1}^{m} a_k t^k \right\rangle$$
$$= \sum_{j=0}^{m} \sum_{k=1}^{m} c_j a_k (-1)^j \left(\frac{d}{dt}\right)^j t^k \bigg|_{t=0} = \sum_{j=0}^{m} \sum_{k=1}^{m} c_j a_k (-1)^j k! \delta_{jk} = \sum_{k=1}^{m} c_k a_k (-1)^k k!$$

Choosing arbitrary values for a_1, \ldots, a_m we see that $c_1 = \cdots = c_m = 0$, thus $P - T = c_0 \delta_0$ and in fact any c_0 works, since $\langle t \delta_0, \varphi \rangle = \langle \delta_0, t \varphi \rangle = 0$. Thus

$$\{T \in \mathcal{S}'(\mathbb{R}) : tT = 1\} = \left\{ p. v. \frac{1}{t} + c\delta_0 : c \in \mathbb{R} \right\}.$$

4 / 6

(b) Does there exist any tempered distribution $S \in \mathcal{S}'(\mathbb{R})$ such that $t^2 S = 1$?

Solution: Yes! Let $P = p. v. \frac{1}{t}$, multiply by t the equation tP = 1 and differentiate:

 $t^2P = t \implies 2tP + t^2P' = 1 \implies 2 + t^2P' = 1 \implies t^2(-P') = 1.$

Here we have used the Leibinz rule for the product of a smooth function and a distribution, which is immediate to prove. Thus S = -P' is one such distribution. One can also give an explicit expression for T = -P':

$$\begin{split} \langle T,\varphi\rangle &= \langle P,\varphi'\rangle = \lim_{\varepsilon \to 0} \int_{|t|>\varepsilon} \frac{\varphi'(t)}{t} \, \mathrm{d}t = \lim_{\varepsilon \to 0} \frac{-\varphi(\varepsilon) - \varphi(-\varepsilon)}{\varepsilon} + \int_{|t|>\varepsilon} \frac{\varphi(t)}{t^2} \, \mathrm{d}t \\ &= \lim_{\varepsilon \to 0} \frac{2\varphi(0) - \varphi(\varepsilon) - \varphi(-\varepsilon)}{\varepsilon} - \frac{2\varphi(0)}{\varepsilon} + \int_{|t|>\varepsilon} \frac{\varphi(t)}{t^2} \, \mathrm{d}t \\ &= -\varphi'(0) + \varphi'(0) + \lim_{\varepsilon \to 0} -\frac{2\varphi(0)}{\varepsilon} + \int_{|t|>\varepsilon} \frac{\varphi(t)}{t^2} \, \mathrm{d}t = \lim_{\varepsilon \to 0} -\frac{2\varphi(0)}{\varepsilon} + \int_{|t|>\varepsilon} \frac{\varphi(t)}{t^2} \, \mathrm{d}t \end{split}$$

Exercise 3.5.

(a) Given a rotation $A \in SO(n)$, define by duality the rotation operator $\mathsf{R}_A : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ for tempered distributions, extending the rotation operator $\mathsf{R}_A f(x) := f(Ax)$ of functions. How is the Fourier transform of $\mathsf{R}_A T$ related to \widehat{T} ?

Solution: We let $\langle \mathsf{R}_A T, \varphi \rangle := \langle T, \mathsf{R}_{A^{-1}} \varphi \rangle$. Then, if T is given by an L^1_{loc} function f,

$$\langle \mathsf{R}_A f, \varphi \rangle = \langle f, \mathsf{R}_{A^{-1}} \varphi \rangle = \int f(x) \varphi(A^{-1}x) \, \mathrm{d}x = \int f(Ay) \varphi(y) \, \mathrm{d}y$$

agrees with $\langle \mathsf{R}_A f, \varphi \rangle$ defined in the pointwise way. For $\varphi \in \mathcal{S}(\mathbb{R}^n)$ we have that

$$\widehat{\mathsf{R}_A\varphi}(\xi) = \int \mathsf{R}_A\varphi(y)e^{-iy\cdot\xi}\,\mathrm{d}y = \int \varphi(Ay)e^{-iAy\cdot A\xi}\,\mathrm{d}y$$
$$= \int \varphi(x)e^{-ix\cdot A\xi}\,\mathrm{d}x = \hat{\varphi}(A\xi) = \mathsf{R}_A\hat{\varphi}(\xi),$$

so for $T \in \mathcal{S}'(\mathbb{R}^n)$ we have

$$\langle \widehat{\mathsf{R}_A T}, \varphi \rangle = \langle \mathsf{R}_A T, \widehat{\varphi} \rangle = \langle T, \mathsf{R}_{A^{-1}} \widehat{\varphi} \rangle = \langle T, \widehat{\mathsf{R}_{A^{-1}}} \varphi \rangle = \langle \widehat{T}, \mathsf{R}_{A^{-1}} \varphi \rangle = \langle \mathsf{R}_A \widehat{T}, \varphi \rangle,$$

so $\widehat{\mathsf{R}_A T} = \mathsf{R}_A \widehat{T}$.

(b) Given a scalar $\lambda > 0$, define by duality the dilation operator $\mathsf{D}_{\lambda} : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ for tempered distributions, extending the dilation operator $\mathsf{D}_{\lambda}f(x) := f(\lambda x)$ of functions. How is the Fourier transform of $\mathsf{D}_{\lambda}T$ related to \widehat{T} ?

Solution: We let $\langle \mathsf{D}_{\lambda}T, \varphi \rangle := \lambda^{-n} \langle T, \mathsf{D}_{\lambda^{-1}}\varphi \rangle$. Then, if T is given by an L^1_{loc} function f,

$$\langle \mathsf{D}_{\lambda}f,\varphi\rangle = \langle f,\mathsf{D}_{\lambda^{-1}}\varphi\rangle = \lambda^{-n}\int f(x)\varphi(\lambda^{-1}x)\,\mathrm{d}x = \int f(\lambda y)\varphi(y)\,\mathrm{d}y$$

5/6

agrees with $\langle \mathsf{D}_{\lambda} f, \varphi \rangle$ defined in the pointwise way. For $\varphi \in \mathcal{S}(\mathbb{R}^n)$ we have that

$$\widehat{\mathsf{D}_{\lambda}\varphi}(\xi) = \int \mathsf{D}_{\lambda}\varphi(y)e^{-iy\cdot\xi}\,\mathrm{d}y = \int \varphi(\lambda y)e^{-i\lambda y\cdot\lambda^{-1}\xi}\,\mathrm{d}y$$
$$= \lambda^{-n}\int \varphi(x)e^{-ix\cdot\lambda^{-1}\xi}\,\mathrm{d}x = \lambda^{-n}\hat{\varphi}(\lambda^{-1}\xi) = \lambda^{-n}\mathsf{D}_{\lambda^{-1}}\hat{\varphi}(\xi),$$

so for $T \in \mathcal{S}'(\mathbb{R}^n)$ we have

$$\begin{split} &\langle \widehat{\mathsf{D}_{\lambda}T}, \varphi \rangle = \langle \mathsf{D}_{\lambda}T, \widehat{\varphi} \rangle = \lambda^{-n} \langle T, \mathsf{D}_{\lambda^{-1}} \widehat{\varphi} \rangle = \langle T, \widehat{\mathsf{D}_{\lambda}\varphi} \rangle = \langle \widehat{T}, \mathsf{D}_{\lambda}\varphi \rangle = \lambda^{-n} \langle \widehat{T}, \lambda^{n} \mathsf{D}_{\lambda}\varphi \rangle = \lambda^{-n} \langle \mathsf{D}_{\lambda^{-1}} \widehat{T}, \varphi \rangle, \\ &\text{so } \widehat{\mathsf{D}_{\lambda}T} = \lambda^{-n} \mathsf{D}_{\lambda^{-1}} \widehat{T}. \end{split}$$

(c) Show that if $T \in \mathcal{S}'(\mathbb{R}^n)$ is radially symmetric then so is \hat{T} . Show that if T is α -homogeneous then \hat{T} is β -homogeneous for some $\beta \in \mathbb{R}$. What is β ?

Solution: The first part is immediate. For the second part, if T is α -homogeneous,

$$\langle \mathsf{D}_{\lambda}\widehat{T},\varphi\rangle = \langle \lambda^{-n}\widehat{\mathsf{D}_{\lambda^{-1}}T},\varphi\rangle = \langle \lambda^{-n}\widehat{\lambda^{-\alpha}T},\varphi\rangle = \lambda^{-n-\alpha}\langle\widehat{T},\varphi\rangle \qquad \forall \varphi \in \mathcal{S},$$

hence $\mathsf{D}_{\lambda}\hat{T} = \lambda^{-n-\alpha}\hat{T}$ and \hat{T} is $(-n-\alpha)$ -homogeneous.

(d) Show that if $f \in L^1_{loc}(\mathbb{R}^n) \cap \mathcal{S}'(\mathbb{R}^n)$ and is radially symmetric (that is, $\mathsf{R}_A f = f$ for every $A \in \mathsf{SO}(n)$) and α -homogeneous (that is, $\mathsf{D}_\lambda f = \lambda^\alpha f \ \forall \lambda > 0$), then $f(x) = c|x|^\alpha$ almost everywhere, for some $c \in \mathbb{R}$.

Solution: Recall that two L^1_{loc} functions agree as distibutions if and only if they agree almost everywhere. Thus, we have that $\forall A \in SO(n), \forall \lambda > 0$, almost every $z \in \mathbb{R}^n$ satisfies f(z) = f(Az) and $f(\lambda z) = \lambda^{\alpha} f(z)$.

Fix $x, y \in \mathbb{R}^n \setminus \{0\}$ two Lebesgue points of f, and choose $\lambda > 0$ and $A \in \mathsf{SO}(n)$ such that $y = \lambda Ax$. Then we have that $\forall \varepsilon > 0$,

$$\begin{split} \frac{1}{\omega_n \varepsilon^n} \int_{B_{\varepsilon}(x)} f(z) \, \mathrm{d}z &= \frac{1}{\omega_n \varepsilon^n} \int_{B_{\varepsilon}(x)} f(A^{-1}z) \, \mathrm{d}z = \frac{1}{\omega_n \varepsilon^n} \int_{B_{\varepsilon}(Ax)} f(z') \, \mathrm{d}z' = \frac{\lambda^{-\alpha}}{\omega_n \varepsilon^n} \int_{B_{\varepsilon}(Ax)} f(\lambda z') \, \mathrm{d}z' \\ &= \frac{\lambda^{-\alpha - n}}{\omega_n \varepsilon^n} \int_{B_{\lambda \varepsilon}(\lambda Ax)} f(z'') \, \mathrm{d}z'' = \frac{\lambda^{-\alpha}}{\omega_n (\lambda \varepsilon)^n} \int_{B_{\lambda \varepsilon}(y)} f(z'') \, \mathrm{d}z''. \end{split}$$

Letting $\varepsilon \to 0$, since x and y are Lebesgue points we obtain that $f(x) = \lambda^{-\alpha} f(y) = \left(\frac{|y|}{|x|}\right)^{-\alpha} f(y)$. Fixing x and letting y vary, this shows that $f(y) = c|y|^{\alpha}$ for almost every $y \in \mathbb{R}^n$, where $c = f(x)/|x|^{\alpha}$.