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Exercise 3.1. %
Let T € &'(R™) and let p € N be the order of T'. Consider moreover ¢ € C*°(R"), such that
0% = 0 on supp T for any « such that |a| < p. Show that

(T, @) = 0.

Hint: denoting K := suppT and Kj := {z € R" : dist(z, K) < 0}, define for every small
enough £ > 0 the function v, := 1k, * x., where (xc)e>0 is a standard family of mollifiers,
and given any ¢ € C*°(R"), investigate the behavior of (T, p1).) as e — 0.

Solution:

Let K := supp 7', which is compact, and define 1g,_, x and 1), as in the hint. Here we are assuming
that

1 s
ceCEBmO), [ x=1 md o= x (2).
We have that . € C°°(R") and from the definition of the convolution operator we have

supp (L, * Xe) C supp (1x,.) +supp (xe) C supp (1k,.) -

Hence we deduce
Ye € Cg°(R™) .

We claim that ). =1 on K.. Indeed, let x € K., there holds
1 T—y
ve(w) = | Lo (y) 5 x dy

£

Observe that supp (x (2)) C B:(0). Hence, for x (*=%) # 0 there need to be | — y| < & which
implies dist(y, K.) < € and hence y € Ka.. Therefore

1 —
1/’5(1')—/]1@ 8nX<§C€y> dy=1

which concludes the proof of the claim.

We decompose ¢ as follows
=9+ (1—2e)p.

From the claim we just proved we deduce supp (1 — ¢.)¢ C K¢. Hence (T, (1 —.)p) = 0 since
suppT = K. Thus we have (T, ¢) = (T, ©i.).

We claim that for any o € N there exists of C, > 0 such that
”80‘1/}€|’00 < C(ocf:i‘a| :

Indeed, we have on one hand
8a(ﬂK2€ * Xe) = L, *x 0%Xe

and on the other hand a direct computation gives

9%xe = e " ll(5y) = [|0%x.|1 = e, .
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Combining these two facts we obtain

oot <[ ot 2 (22) a

< N Lkalloo 10%xeln < e71Ca

This implies the claim.

Let x € K3, we consider y € K such that |x — y| < 4e. Taylor expansion at y gives for any v with
|| < p the existence of £ in the segment [z, y] such that

haf hﬂ v
Dp(x) + > 0%y )1 S+ Y 9%( i
ll<p a=Nt S -
<o
where
i_ 1
o ol oy
and

2 —y=(h1,... hp), h® =h$t - hon .

From the hypothesis we have for any y € K = supp(T) 07¢(y) = 0 V|vy| < p. Combining this
hypothesis with the Taylor expansion we obtain

107l (1020) < Cp 1701
Finally we bound

(T, @) =T, o) <C Y 100 8e) Lo (x50

|lal<p
<C- > Y 107l 1077 ey Cr
lal<p [yI<|a|
<C Y crlerttlel <o, re
|a|<p
This holds for any arbitrary small € hence we deduce |(T, ¢)| = 0. O

Exercise 3.2. %
We have seen in the lecture that for every 7" € S’(R"), there is a well-defined map

p € S(R") — T xp € C(R"™).

(a) Show that this map is continuous as a linear map between Fréchet spaces.

2/6



D-MATH Functional Analysis 11 ETH Ziirich
Prof. Tristan Riviere Sample Solutions Sheet 3 FS 2025

Solution: Suppose that the order of T"is p and let k € N. Then

sup |0%(T % ) ()| = sup (T x 0%)(x)| = sup [(T, (0%)(x — -))|

rE€ By, rE€ By, €Dy
la| <k o <k laf<k
< sup CN,((0%)(z —-))
rE€ By,
|| <k
< C sup sup (1+ |y|)P|0“Po(z —y)|.
€ B yeR™
lo| <k |B|<p

Now observe that for x € By and y € R, 1+|y| < 1+|z|+|z—y| < k+1+|z—y| < (k+1)(1+|z—y|),
hence

sup 0%(T @) ()] < C Sup (L +12))P1070(2)] < CNisp(9).

x€ z€R™

ol <k I<k-+p

(b) Show that, if in addition 7" € &'(R"), then T'x ¢ € S(R™).

(c) In this case, prove that moreover the map is continuous into the space S(R™).

Solution: Suppose that T is supported in Br and has order p. Then for each k € N,

Ni(T % p) = sup (1+ |2])*10%(T » ¢)(2)| = sup (1 + |z)*|(T » 0%p)(2)]

reR™
| <k
< sup (14 [2))*C sup |(8*"p)(z — y)|.
TeR™ yEBR
|| <k 18<p

Now observe that 1 + |z| <1+ |z —y|+ |y <1+r+|z—y| < (1 +7)(1+|z—y|) ify € Bg, so

Nl x) <C sup (L+]2)H070(2)] < CNioip (9.

Exercise 3.3.
Recall the definition of the translation operators: for a € R" we first define 7,¢(x) = p(z—a)
for functions ¢ € S(R™), and then we define by duality (1,7, ¢) := (T, 7_,¢) for T' € S'(R™).

(a) % Prove that VI' € S'(R"),Vy € S(R") and Va € R™ it holds:

To(T * ) = (1.T) x o =T * Tap.

3/6



D-MATH Functional Analysis 11 ETH Ziirich
Prof. Tristan Riviere Sample Solutions Sheet 3 FS 2025

Solution: One one hand:
Ta(Txp)(x) = (Txp)(x —a) =(T,p(x —a—")) =(T,p(x - (a+)))
= (T, 7—a(p(z —))) = (raT, p(x — ) = ((1aT) * ¢)(2).

On the other hand:

Ta(T*¢)(x) = (T @) (z — a) = (T, p(x —a =) = (T, (rap)(z = -)) = (T'* (Tap)) (2)-

(b) Let U : S(R™) — S(R™) be a linear continuous map commuting with translations, that
is, such that for any a € R", Uo 1, = 7,0 U. Prove that there exists a T € S§’(R") such that

Up=Tx¢p Vo € S(R™).

Solution: Let (T, ¢) := (Up)(0) for ¢ € S(R™) (here ¢(x) = p(—=x)). Notice that, owing to the
continuity of U, [(U@)(0)] < No(U@) < CNp(¢) = CNp(¢), so T is indeed a tempered distribution.
We just need to check:

Up(a) = (7-a(U®))(0) = (Ur—a)(0) = (T, 7=0p) = (T, p(a = -)) = (T x ¢)(a),

where we have used that 7—,0(x) = (T_q¢)(—2) = ¢(—x + a) = p(a — ).

Exercise 3.4.

(a) Determine all the tempered distributions 7' € S’(R) such that t7" = 1 (here t is the
independent variable of R and 1 denotes the constant function 1, seen as a distribution).

Solution: Let P =p.v. % € §'(R); in the lecture we have seen that tP = 1, therefore for any such
T it holds that ¢(P —T) = 0. Given any ¢ € C°(R\ {0}), also ¢(t)/t is in C°(R \ {0}), hence

(P—T,¢) = <P—T,t%> - <t(P—T),%> —0,

which shows that supp(P —T') C {0}. Let m be the order of P —T; then by the lemma of Schwartz
we have that P — T = Z;‘n:o cﬂéj) for some m € N and coefficients ¢; € R.

Now take arbitrary coefficients aj, ..., an, and consider the polynomial ¢(t) = > ", ait®, which is
in C*°(R). Since P — T € &'(R), we may pair them and get

0= <t(PT),§:aktk_1> = <PT,i:aktk> = <Zc] 5 ,Zaktk>

k=1 7=0
j k k
=33 a1y (dt> H =SS a1k = 3 epar(— 1)
7=0 k=1 t=0 7=0 k=1 k=1
Choosing arbitrary values for aq,...,a,, we see that ¢c; =--- = ¢, =0, thus P — T = ¢pdg and in

fact any ¢o works, since (tdg, ) = (do,te) = 0. Thus

1
{TGS'(R):thl}:{p.v.t+0(50:c€R}.
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(b) Does there exist any tempered distribution S € §'(R) such that 25 = 17
Solution: Yes! Let P =p.v. %, multiply by ¢ the equation tP = 1 and differentiate:

t?P=t = 2AP+#*P'=1 = 24+#P'=1 = #-P)=1

Here we have used the Leibinz rule for the product of a smooth function and a distribution, which
is immediate to prove. Thus S = —P’ is one such distribution. One can also give an explicit
expression for T' = —P’:

(T,p) = (P,¢') = lim P 4y _ iy~ (=) +/ e 4,
[t|>e

e—0 It|>e t e—0 €

20(0) — p(e) — (=)  2¢(0) +/ P(t) 4
[t]|>e

= lim 5
e—0 e £ t

20(0 t 20(0 ¢
— _(0) + £/(0) + lim — 2210 +/ &)dt _ Jim 2210 +/ —@(2) dt.
e=0 t>e t [t]>e 1t

£ e—0 £

Exercise 3.5.

(a) Given a rotation A € SO(n), define by duality the rotation operator R4 : S'(R") —
S'(R™) for tempered distributions, extending the rotation operator Raf(z) := f(Ax) of

functions. How is the Fourier transform of R,7T related to 7
Solution: We let (RAT, ¢) := (T, R -1¢). Then, if T is given by an L . function f,

Rafoo) = Rarp) = [ Fladola ) do = [ F(An)oty)dy
agrees with (R4 f, ) defined in the pointwise way. For ¢ € S(R™) we have that
Rap©) = [ Raglwe ey = [o(ape ricay
= [ pla)emi= 4o = p(46) = Rap(6).
so for T' € §'(R™) we have

(RAT, @) = (RaT, ) = (T, Ry13) = (T,R4-19) = (T,R4-10) = (RaT', ),

SO R/A? = RAQAT

(b) Given a scalar A > 0, define by duality the dilation operator D, : S'(R") — S'(R™) for
tempered distributions, extending the dilation operator D, f(x) := f(Ax) of functions. How

is the Fourier transform of DT related to 17
Solution: We let (D)\T,¢) := A™"(T,Dy-1¢). Then, if T is given by an L] _ function f,

(Drfo @) = (f,Dycrg) = A" / F@)p(A 1) dz = / FOw)e(y) dy
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agrees with (D, f, ¢) defined in the pointwise way. For ¢ € S(R™) we have that
5(€) = [ Daplwle 7y = [p0)e My
=37 [ plae e e = XHIE = XDA9(6),
so for T' € §’'(R™) we have
(DAT, ) = (DAT. ) = AT, Dy-18) = (T Drp) = (T. Dag) = A (T, A"Dag) = A" (Dr-1 T ),

SO Sﬁ = )\_”Dklf.
(c) Show that if T € S'(R") is radially symmetric then so is T. Show that if T is a-
homogeneous then T is f-homogeneous for some § € R. What is 87

Solution: The first part is immediate. For the second part, if T is a-homogeneous,
(DAT, ) = (AN"Dy1T, ) = (N"AOT, ) = X" NT,p) Vg €S,

hence DA\T = A™"=*T and 7T is (—n — a)-homogeneous.

(d) Show that if f € L (R")NS'(R") and is radially symmetric (that is, R4 f = f for every

A € SO(n)) and a-homogeneous (that is, Dyf = A*f VA > 0), then f(z) = c|z|* almost
everywhere, for some ¢ € R.

Solution: Recall that two LllOC functions agree as distibutions if and only if they agree almost
everywhere. Thus, we have that YA € SO(n),VA > 0, almost every z € R" satisfies f(z) = f(Az)
and f(A\z) = A f(2).

Fix z,y € R™\ {0} two Lebesgue points of f, and choose A > 0 and A € SO(n) such that y = A\Az.
Then we have that Ve > 0,

! / F(z)ds = — / FA " 2)ds = / F()de = 2 / FOAZ) A2
wWne™ J B, (z) wWne™ JB, (z) Wne" J B, (Az) wne™ /B, (Az)
)\701

B \—a—n

f SN dy — / f SN ds.
wre' /B,\g()\Aw) ( ) wn()\g)n Bie(y) ( )

Letting € — 0, since x and y are Lebesgue points we obtain that f(z) = A7 f(y) = (M>_a fly).

||

Fixing = and letting y vary, this shows that f(y) = c|y|* for almost every y € R", where ¢ =
fx) /]|
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