
D-MATH
Prof. Tristan Rivière

Functional Analysis II
Sample Solutions Sheet 3

ETH Zürich
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Exercise 3.1. ⋆
Let T ∈ E ′(Rn) and let p ∈ N be the order of T . Consider moreover φ ∈ C∞(Rn), such that
∂αφ = 0 on suppT for any α such that |α| ≤ p. Show that

⟨T, φ⟩ = 0.

Hint: denoting K := suppT and Kδ := {x ∈ Rn : dist(x,K) ≤ δ}, define for every small
enough ε > 0 the function ψε := 1K2ε ⋆ χε, where (χε)ε>0 is a standard family of mollifiers,
and given any φ ∈ C∞(Rn), investigate the behavior of ⟨T, φψε⟩ as ε→ 0.

Solution:

Let K := suppT , which is compact, and define 1K2ε , χε and ψε as in the hint. Here we are assuming
that

χ ∈ C∞
c (B1(0)),

∫
Rn

χ = 1 and χε(s) =
1

εn
χ
(s
ε

)
.

We have that ψε ∈ C∞(Rn) and from the definition of the convolution operator we have

supp (1K2ε ⋆ χε) ⊂ supp (1K2ε) + supp (χε) ⊂ supp (1K3ε) .

Hence we deduce
ψε ∈ C∞

0 (Rn) .

We claim that ψε ≡ 1 on Kε. Indeed, let x ∈ Kε, there holds

ψε(x) =

∫
Rn

1K2ε(y)
1

εn
χ

(
x− y

ε

)
dy

Observe that supp
(
χ
( ·
ε

))
⊂ Bε(0). Hence, for χ

(x−y
ε

)
̸= 0 there need to be |x − y| < ε which

implies dist(y,Kε) < ε and hence y ∈ K2ε. Therefore

ψε(x) =

∫
Rn

1

εn
χ

(
x− y

ε

)
dy = 1

which concludes the proof of the claim.

We decompose φ as follows
φ = φψε + (1− ψε)φ.

From the claim we just proved we deduce supp (1 − ψε)φ ⊂ Kc
ε . Hence ⟨T, (1 − ψε)φ⟩ = 0 since

suppT = K. Thus we have ⟨T, φ⟩ = ⟨T, φψε⟩.

We claim that for any α ∈ Nn there exists of Cα > 0 such that

∥∂αψε∥∞ ≤ Cαε
−|α| :

Indeed, we have on one hand
∂α(1K2ε ⋆ χε) = 1K2ε ⋆ ∂

αχε ,

and on the other hand a direct computation gives

∂αχε = ε−n−|α|(∂αχ) =⇒ ∥∂αχε∥1 = ε−|α|Cα .
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Combining these two facts we obtain

|∂αψε(x)|∞ =

∥∥∥∥∫
Rn

1K2ε(y)
1

εn
∂αxχ

(
x− y

ε

)
dy

∥∥∥∥
∞

≤ ∥1K2ε∥∞ ∥∂αχε∥1 ≤ ε−|α|Cα .

This implies the claim.

Let x ∈ K3ε, we consider y ∈ K such that |x− y| ≤ 4ε. Taylor expansion at y gives for any γ with
|γ| ≤ p the existence of ξ in the segment [x, y] such that

∂γφ(x) = ∂γφ(y) +
∑
|α|≤p
γ<α

∂αφ(y)
hα−γ

(α− γ)!
+

∑
|β|=p+1

∂βφ(ξ)
hβ−γ

(β − γ)!

where
1

α!
=

1

α1! . . . αn!

and
x− y = (h1, . . . , hn), h

α = hα1
1 · · ·hαn

n .

From the hypothesis we have for any y ∈ K = supp(T ) ∂γφ(y) = 0 ∀|γ| ≤ p. Combining this
hypothesis with the Taylor expansion we obtain

∥∂γφ∥L∞(K3ε) ≤ Cφ ε
p+1−|γ| .

Finally we bound

|⟨T, φ⟩| = |⟨T, φψε⟩| ≤ C
∑
|α|≤p

∥∂α(φψε)∥L∞(K3ε)

≤ C ·
∑
|α|≤p

∑
|γ|≤|α|

∥∂γφ∥L∞(K3ε)∥∂
α−γ ψε∥∞Cγ

≤ C
∑
|α|≤p

C ′′εp+1−|α| ≤ Cφ,T ε .

This holds for any arbitrary small ε hence we deduce |⟨T, φ⟩| = 0.

Exercise 3.2. ⋆
We have seen in the lecture that for every T ∈ S ′(Rn), there is a well-defined map

φ ∈ S(Rn) 7−→ T ⋆ φ ∈ C∞(Rn).

(a) Show that this map is continuous as a linear map between Fréchet spaces.
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Solution: Suppose that the order of T is p and let k ∈ N. Then

sup
x∈Bk
|α|≤k

|∂α(T ⋆ φ)(x)| = sup
x∈Bk
|α|≤k

|(T ⋆ ∂αφ)(x)| = sup
x∈Bk
|α|≤k

|⟨T, (∂αφ)(x− ·)⟩|

≤ sup
x∈Bk
|α|≤k

CNp((∂
αφ)(x− ·))

≤ C sup
x∈Bk
|α|≤k

sup
y∈Rn

|β|≤p

(1 + |y|)p|∂α+βφ(x− y)|.

Now observe that for x ∈ Bk and y ∈ Rn, 1+|y| ≤ 1+|x|+|x−y| ≤ k+1+|x−y| ≤ (k+1)(1+|x−y|),
hence

sup
x∈Bk
|α|≤k

|∂α(T ⋆ φ)(x)| ≤ C sup
z∈Rn

|γ|≤k+p

(1 + |z|)p|∂γφ(z)| ≤ CNk+p(φ).

(b) Show that, if in addition T ∈ E ′(Rn), then T ⋆ φ ∈ S(Rn).

(c) In this case, prove that moreover the map is continuous into the space S(Rn).

Solution: Suppose that T is supported in BR and has order p. Then for each k ∈ N,

Nk(T ⋆ φ) = sup
x∈Rn

|α|≤k

(1 + |x|)k|∂α(T ⋆ φ)(x)| = sup
x∈Rn

|α|≤k

(1 + |x|)k|(T ⋆ ∂αφ)(x)|

= sup
x∈Rn

|α|≤k

(1 + |x|)k|⟨T, (∂αφ)(x− ·)⟩|

≤ sup
x∈Rn

|α|≤k

(1 + |x|)kC sup
y∈BR
|β|≤p

|(∂α+βφ)(x− y)|.

Now observe that 1 + |x| ≤ 1 + |x− y|+ |y| ≤ 1 + r + |x− y| ≤ (1 + r)(1 + |x− y|) if y ∈ BR, so

Nk(T ⋆ φ) ≤ C sup
z∈Rn

|γ|≤k+p

(1 + |z|)k|∂γφ(z)| ≤ CNk+p(φ).

Exercise 3.3.
Recall the definition of the translation operators: for a ∈ Rn we first define τaφ(x) = φ(x−a)
for functions φ ∈ S(Rn), and then we define by duality ⟨τaT, φ⟩ := ⟨T, τ−aφ⟩ for T ∈ S ′(Rn).

(a) ⋆ Prove that ∀T ∈ S ′(Rn),∀φ ∈ S(Rn) and ∀a ∈ Rn it holds:

τa(T ⋆ φ) = (τaT ) ⋆ φ = T ⋆ τaφ.
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Solution: One one hand:

τa(T ⋆ φ)(x) = (T ⋆ φ)(x− a) = ⟨T, φ(x− a− ·)⟩ = ⟨T, φ(x− (a+ ·))⟩
= ⟨T, τ−a(φ(x− ·))⟩ = ⟨τaT, φ(x− ·)⟩ = ((τaT ) ⋆ φ)(x).

On the other hand:

τa(T ⋆ φ)(x) = (T ⋆ φ)(x− a) = ⟨T, φ(x− a− ·)⟩ = ⟨T, (τaφ)(x− ·)⟩ = (T ⋆ (τaφ))(x).

(b) Let U : S(Rn) → S(Rn) be a linear continuous map commuting with translations, that
is, such that for any a ∈ Rn, U ◦ τa = τa ◦U . Prove that there exists a T ∈ S ′(Rn) such that

Uφ = T ⋆ φ ∀φ ∈ S(Rn).

Solution: Let ⟨T, φ⟩ := (Uφ̌)(0) for φ ∈ S(Rn) (here φ̌(x) = φ(−x)). Notice that, owing to the
continuity of U , |(Uφ̌)(0)| ≤ N0(Uφ̌) ≤ CNp(φ̌) = CNp(φ), so T is indeed a tempered distribution.
We just need to check:

Uφ(a) = (τ−a(Uφ))(0) = (Uτ−aφ)(0) = ⟨T, ~τ−aφ⟩ = ⟨T, φ(a− ·)⟩ = (T ⋆ φ)(a),

where we have used that ~τ−aφ(x) = (τ−aφ)(−x) = φ(−x+ a) = φ(a− x).

Exercise 3.4.

(a) Determine all the tempered distributions T ∈ S ′(R) such that tT = 1 (here t is the
independent variable of R and 1 denotes the constant function 1, seen as a distribution).

Solution: Let P = p. v. 1t ∈ S ′(R); in the lecture we have seen that tP = 1, therefore for any such
T it holds that t(P − T ) = 0. Given any φ ∈ C∞

c (R \ {0}), also φ(t)/t is in C∞
c (R \ {0}), hence

⟨P − T, φ⟩ =
〈
P − T, t

φ

t

〉
=

〈
t(P − T ),

φ

t

〉
= 0,

which shows that supp(P −T ) ⊆ {0}. Let m be the order of P −T ; then by the lemma of Schwartz

we have that P − T =
∑m

j=0 cjδ
(j)
0 for some m ∈ N and coefficients cj ∈ R.

Now take arbitrary coefficients a1, . . . , am and consider the polynomial q(t) =
∑m

k=1 akt
k, which is

in C∞(R). Since P − T ∈ E ′(R), we may pair them and get

0 =

〈
t(P − T ),

m∑
k=1

akt
k−1

〉
=

〈
P − T,

m∑
k=1

akt
k

〉
=

〈
m∑
j=0

cjδ
(j)
0 ,

m∑
k=1

akt
k

〉

=

m∑
j=0

m∑
k=1

cjak(−1)j
(
d

dt

)j

tk

∣∣∣∣∣
t=0

=

m∑
j=0

m∑
k=1

cjak(−1)jk!δjk =

m∑
k=1

ckak(−1)kk!

Choosing arbitrary values for a1, . . . , am we see that c1 = · · · = cm = 0, thus P − T = c0δ0 and in
fact any c0 works, since ⟨tδ0, φ⟩ = ⟨δ0, tφ⟩ = 0. Thus

{T ∈ S ′(R) : tT = 1} =

{
p. v.

1

t
+ cδ0 : c ∈ R

}
.
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(b) Does there exist any tempered distribution S ∈ S ′(R) such that t2S = 1?

Solution: Yes! Let P = p. v. 1t , multiply by t the equation tP = 1 and differentiate:

t2P = t =⇒ 2tP + t2P ′ = 1 =⇒ 2 + t2P ′ = 1 =⇒ t2(−P ′) = 1.

Here we have used the Leibinz rule for the product of a smooth function and a distribution, which
is immediate to prove. Thus S = −P ′ is one such distribution. One can also give an explicit
expression for T = −P ′:

⟨T, φ⟩ = ⟨P,φ′⟩ = lim
ε→0

∫
|t|>ε

φ′(t)

t
dt = lim

ε→0

−φ(ε)− φ(−ε)
ε

+

∫
|t|>ε

φ(t)

t2
dt

= lim
ε→0

2φ(0)− φ(ε)− φ(−ε)
ε

− 2φ(0)

ε
+

∫
|t|>ε

φ(t)

t2
dt

= −φ′(0) + φ′(0) + lim
ε→0

−2φ(0)

ε
+

∫
|t|>ε

φ(t)

t2
dt = lim

ε→0
−2φ(0)

ε
+

∫
|t|>ε

φ(t)

t2
dt.

Exercise 3.5.

(a) Given a rotation A ∈ SO(n), define by duality the rotation operator RA : S ′(Rn) →
S ′(Rn) for tempered distributions, extending the rotation operator RAf(x) := f(Ax) of

functions. How is the Fourier transform of RAT related to pT?

Solution: We let ⟨RAT, φ⟩ := ⟨T,RA−1φ⟩. Then, if T is given by an L1
loc function f ,

⟨RAf, φ⟩ = ⟨f,RA−1φ⟩ =
∫
f(x)φ(A−1x) dx =

∫
f(Ay)φ(y) dy

agrees with ⟨RAf, φ⟩ defined in the pointwise way. For φ ∈ S(Rn) we have that

zRAφ(ξ) =

∫
RAφ(y)e

−iy·ξ dy =

∫
φ(Ay)e−iAy·Aξ dy

=

∫
φ(x)e−ix·Aξ dx = φ̂(Aξ) = RAφ̂(ξ),

so for T ∈ S ′(Rn) we have

⟨zRAT , φ⟩ = ⟨RAT, pφ⟩ = ⟨T,RA−1 pφ⟩ = ⟨T, {RA−1φ⟩ = ⟨ pT ,RA−1φ⟩ = ⟨RA
pT , φ⟩,

so zRAT = RA
pT .

(b) Given a scalar λ > 0, define by duality the dilation operator Dλ : S ′(Rn) → S ′(Rn) for
tempered distributions, extending the dilation operator Dλf(x) := f(λx) of functions. How

is the Fourier transform of DλT related to pT?

Solution: We let ⟨DλT, φ⟩ := λ−n⟨T,Dλ−1φ⟩. Then, if T is given by an L1
loc function f ,

⟨Dλf, φ⟩ = ⟨f,Dλ−1φ⟩ = λ−n

∫
f(x)φ(λ−1x) dx =

∫
f(λy)φ(y) dy
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agrees with ⟨Dλf, φ⟩ defined in the pointwise way. For φ ∈ S(Rn) we have that

yDλφ(ξ) =

∫
Dλφ(y)e

−iy·ξ dy =

∫
φ(λy)e−iλy·λ−1ξ dy

= λ−n

∫
φ(x)e−ix·λ−1ξ dx = λ−nφ̂(λ−1ξ) = λ−nDλ−1φ̂(ξ),

so for T ∈ S ′(Rn) we have

⟨zDλT , φ⟩ = ⟨DλT, pφ⟩ = λ−n⟨T,Dλ−1 pφ⟩ = ⟨T, yDλφ⟩ = ⟨ pT ,Dλφ⟩ = λ−n⟨ pT , λnDλφ⟩ = λ−n⟨Dλ−1 pT , φ⟩,

so zDλT = λ−nDλ−1 pT .

(c) Show that if T ∈ S ′(Rn) is radially symmetric then so is pT . Show that if T is α-

homogeneous then pT is β-homogeneous for some β ∈ R. What is β?

Solution: The first part is immediate. For the second part, if T is α-homogeneous,

⟨Dλ
pT , φ⟩ = ⟨λ−n

{Dλ−1T , φ⟩ = ⟨λ−n
{λ−αT , φ⟩ = λ−n−α⟨ pT , φ⟩ ∀φ ∈ S,

hence Dλ
pT = λ−n−α

pT and pT is (−n− α)-homogeneous.

(d) Show that if f ∈ L1
loc(Rn)∩S ′(Rn) and is radially symmetric (that is, RAf = f for every

A ∈ SO(n)) and α-homogeneous (that is, Dλf = λαf ∀λ > 0), then f(x) = c|x|α almost
everywhere, for some c ∈ R.
Solution: Recall that two L1

loc functions agree as distibutions if and only if they agree almost
everywhere. Thus, we have that ∀A ∈ SO(n), ∀λ > 0, almost every z ∈ Rn satisfies f(z) = f(Az)
and f(λz) = λαf(z).

Fix x, y ∈ Rn \ {0} two Lebesgue points of f , and choose λ > 0 and A ∈ SO(n) such that y = λAx.
Then we have that ∀ε > 0,

1

ωnεn

∫
Bε(x)

f(z) dz =
1

ωnεn

∫
Bε(x)

f(A−1z) dz =
1

ωnεn

∫
Bε(Ax)

f(z′) dz′ =
λ−α

ωnεn

∫
Bε(Ax)

f(λz′) dz′

=
λ−α−n

ωnεn

∫
Bλε(λAx)

f(z′′) dz′′ =
λ−α

ωn(λε)n

∫
Bλε(y)

f(z′′) dz′′.

Letting ε → 0, since x and y are Lebesgue points we obtain that f(x) = λ−αf(y) =
(
|y|
|x|

)−α
f(y).

Fixing x and letting y vary, this shows that f(y) = c|y|α for almost every y ∈ Rn, where c =
f(x)/|x|α.
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