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Exercise 4.1. ⋆
Let T ∈ S ′(Rn) and S ∈ E ′(Rn), and recall that we defined T ⋆ S, S ⋆ T ∈ S ′(Rn) as

⟨T ⋆ S, φ⟩ = ⟨T, Š ⋆ φ⟩S′,S and ⟨S ⋆ T, φ⟩ = ⟨S, Ť ⋆ φ⟩E ′,C∞

respectively, for φ ∈ S(Rn).

(a) Let (χε)ε>0 be a sequence of mollifiers as usual, and for S ∈ E ′(Rn), define Sε := S ⋆χε ∈
C∞

c (Rn). Show that, if φ ∈ S(Rn), then

Sε ⋆ φ
ε→0−−→ S ⋆ φ in S(Rn).

Solution: We have that

Sε ⋆ φ(x) = ⟨Sε, φ(x− ·)⟩ = ⟨S ⋆ χε, φ(x− ·)⟩ = ⟨S, χ̌ε ⋆ (φ(x− ·))⟩,= ⟨S, (χε ⋆ φ)(x− ·)⟩,

because (χ̌ε ⋆ φ(x− ·))(y) = (χε ⋆ φ)(x− y). Since ∂α(Sε ⋆ φ) = Sε ⋆ ∂
αφ, it suffices to prove that

∀φ ∈ S(Rn) and any β ∈ Nn,

sup
x∈Rn

∣∣∣xβ (⟨S, (χε ⋆ φ)(x− ·)⟩ − ⟨S, φ(x− ·)⟩)
∣∣∣ ε→0−−−→ 0.

Let p be the order of S. Since K := suppS ⊂ Bρ(0) is compact, there exists a constant CS > 0,such
that

|⟨S, ψ⟩| ≤ CS

∑
|α|≤p

∥∂αψ∥L∞(K), ∀ψ ∈ S(Rn).

Hence we have for any x ∈ Rn,

|xβ (⟨S, (χε ⋆ φ)(x− ·)⟩ − ⟨S, φ(x− ·)⟩) | ≤ CS

∑
|α|≤p

∥xβ ((χε ⋆ ∂
αφ)(x− y)− ∂αφ(x− y)) ∥L∞

y (K).

Let δ > 0 and R > 2 ρ > 0 to be fixed later on. For x ∈ Rn \BR(0) we bound∣∣∣xβ (⟨S, χε ⋆ φ(x− ·)⟩ − ⟨S, φ(x− ·)⟩)
∣∣∣ ≤ CS

∑
|α|≤p

∥xβ ((χε ⋆ ∂
αφ)(x− y)− ∂αφ(x− y)) ∥L∞

y (Bρ(0)).

Observe that for |x| > R > 2 ρ and y ∈ Bρ(0) one has 2|x| > |x− y| > |x|/2 and also

|(χε ⋆ ∂
αφ)(x− y)| ≤ ∥χε∥L1(Rn) ∥∂αφ∥L∞(Bρ+ε(x)) = ∥∂αφ∥L∞(Bρ+ε(x)) ≤ C|x|−1Np+1(φ).

Hence we have for any |α| ≤ p

CS

∑
|α|≤p

∥∥∥∥xβ ((χε ⋆ ∂
αφ)(x− y)− ∂αφ(x− y)) ∥L∞

y (Bρ(0))

∥∥∥
L∞
x (Rn\BR(0))

≤ Cp R
−1 Np+1(φ) .

We choose R such that Cp R
−1 Np+1(φ) < δ/2. Being R now fixed, on BR+ρ(0) the convergence

of χε ⋆ ∂
αφ towards ∂αφ is uniform, hence

CS

∑
|α|≤p

∥∥∥∥xβ ((χε ⋆ ∂
αφ)(x− y)− ∂αφ(x− y)) ∥L∞

y (Bρ(0))

∥∥∥
L∞
x (BR(0))

≤ CSR
|β|

∑
|α|≤p

∥((χε ⋆ ∂
αφ)(z)− ∂αφ(z))∥L∞

z (BR+ρ(0))
≤ δ/2

for ε small enough and we are done.
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(b) Show that S ⋆ T = T ⋆ S whenever T ∈ S ′(Rn) and S ∈ E ′(Rn). To do this, first prove
it for Sε in place of S, and then use the first part (applied to Š) to conclude.

Solution: Let us prove this formula first for Sε ∈ C∞
c (Rn):

⟨Sε ⋆ T, φ⟩ = ⟨Sε, Ť ⋆ φ⟩ =
∫
Sε(x)(Ť ⋆ φ)(x) dx =

∫
Sε(x)⟨Ť , φ(x− ·)⟩ dx

=

〈
Ť ,

∫
Sε(x)φ(x− ·) dx

〉
=

〈
T,

∫
Sε(x)φ(x+ ·) dx

〉
=

〈
T, Šε ⋆ φ

〉
= ⟨T ⋆ Sε, φ⟩ ,

where we have exchanged Ť and the integral of Schwartz functions parametrized by x, and we also
have used the equality∫

Sε(x)φ(x+ y) dx =

∫
Šε(−x)φ(x+ y) dx

z=−x
=

∫
Šε(z)φ(y − z) dz = Šε ⋆ φ(y).

Now fix φ ∈ S(Rn) and observe that

⟨Sε ⋆ T, φ⟩ = ⟨Sε, Ť ⋆ φ⟩ = ⟨S, χε ⋆ (Ť ⋆ φ)⟩
ε→0−−−→ ⟨S, (Ť ⋆ φ)⟩ = ⟨S ⋆ T, φ⟩

since χε ⋆ (Ť ⋆ φ) → Ť ⋆ φ ∈ C∞(Rn) and S ∈ E ′(Rn). On the other hand,

⟨T ⋆ Sε, φ⟩ = ⟨T, Šε ⋆ φ⟩
ε→0−−−→ ⟨T, Š ⋆ φ⟩ = ⟨T ⋆ S, φ⟩

by part (a) and because T ∈ S ′(Rn). The result follows.

Exercise 4.2.
For each 0 < α < n, show that the function f(x) = |x|−α defines a tempered distribution
and compute its Fourier transform.
Hint: first consider α > n/2, show that f̂ is an L1

loc function and apply Exercise 3.5 to

deduce that f̂(ξ) = γ|ξ|β for some β, γ ∈ R with β explicit. In order to find γ, test against

a Gaussian e−|x|2/2, integrate in polar coordinates and relate the resulting expression to the
Γ function. Argue for α < n/2 using the inverse Fourier transform and finally for α = n/2
by approximation.

Solution: If n/2 < α < n, then f(x) = |x|−α = |x|−αχ{|x|≤1} + |x|−αχ{|x|>1} ∈ L1 + L2, so f̂ can
be written as the sum of a continuous function vanishing at infinity (and hence in L∞) and an L2

function, and therefore f̂ ∈ S ′(Rn)∩L1
loc(Rn). Since f is radially symmetric and (−α)-homogeneous

(as a distribution), f̂ is radially symmetric and (−n+α)-homogeneous, and using part (d) and the
fact that f̂ ∈ L1

loc we get that f̂(ξ) = γn,α|ξ|−(n−α) for a constant γn,α ∈ C.

In order to find γn,α, we test against g(x) = e−|x|2/2, with ĝ(ξ) = e−|ξ|2/2:∫
Rn

|x|−αe−|x|2/2 dx = γn,α

∫
Rn

|ξ|−(n−α)e−|ξ|2/2 dξ.
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On the left we have, using the change of variables s = r2/2,∫
Rn

|x|−αe−|x|2/2 dx =

∫ ∞

0
r−αe−r2/2nωnr

n−1 dr = nωn

∫ ∞

0
(2s)

n−α
2

−1e−s ds

= nωn2
n−α
2

−1Γ

(
n− α

2

)
and similarly∫

Rn

|ξ|−(n−α)e−|ξ|2/2 dξ = nωn2
n−(n−α)

2
−1Γ

(
n− (n− α)

2

)
= nωn2

α
2
−1Γ

(α
2

)
,

from which we deduce

γn,α =
nωn2

n−α
2

−1Γ
(
n−α
2

)
nωn2

α
2
−1Γ

(
α
2

) = 2
n
2
−αΓ

(
n−α
2

)
Γ
(
α
2

) .

Thanks to the Fourier inversion formula, we get for free that the Fourier transform of |x|−α is
γ−1
n,n−α|ξ|−(n−α) for 0 < α < n/2. Finally, for α = n/2, choose a sequence αj → α and use the fact

that |x|−αj ⇀ |x|−α and |ξ|−(n−αj) ⇀ |ξ|−(n−α) in S ′ (using the dominated convergence theorem
when we test against φ ∈ S), together with the continuity of the Fourier transform with respect to
weak convergence of tempered distributions.

Exercise 4.3.
Show that, for each n ≥ 2 and 1 ≤ i ≤ n, p. v.

xi

|x|n+1
defines a tempered distribution and

compute its Fourier transform.
Hint: use the previous exercise.

Solution: We claim that p. v.
xi

|x|n+1
=

1

1− n
∂xi |x|1−n, where |x|1−n ∈ S ′(Rn) and we are taking

the distributional derivative. Indeed, for φ ∈ S(Rn),∫
{|x|>ε}

xi
|x|n+1

φ(x) dx =
1

1− n

∫
{|x|>ε}

∂xi |x|1−nφ(x) dx =
1

1− n

∫
{|x|>ε}

div(ei|x|1−n)φ(x) dx

=

∫
∂Bε

|x|1−nφ(x)ei · ν(x) dσ(x)−
1

1− n

∫
{|x|>ε}

|x|1−nei · ∇φ(x) dx

= ε1−n

∫
∂Bε

(φ(x)− φ(0))
xi
|x|

dσ(x)− 1

1− n

∫
{|x|>ε}

|x|1−n∂xiφ(x) dx.

Here we have subtracted φ(0) thanks to the fact that xi/|x| is odd. The first term is bounded in
absolute value by

ε1−n

∫
∂Bε

|φ(x)− φ(0)| dσ(x) ≤ ε1−n · ε · Cεn−1 ε→0−−−→ 0,
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whereas the fact that |x|1−n is integrable around the origin allows us to pass to the limit the second
term:

− 1

1− n

∫
{|x|>ε}

|x|1−n∂xiφ(x) dx
ε→0−−−→ − 1

1− n
⟨|x|1−n, ∂xiφ⟩ =

1

1− n

〈
∂xi |x|1−n, φ

〉
.

This proves the claim. Denote f(x) = |x|1−n. We have by Exercise 3.?(e) that f̂(ξ) = γ|ξ|−1 with

γ = γn,n−1 = 21−
n
2

Γ
(
1
2

)
Γ
(
n−1
2

) .
It follows that

̂
p. v.

xi
|x|n+1

(ξ) =
1

1− n
̂∂xi |x|1−n(ξ) =

1

1− n
iξif̂(ξ) = i

γ

1− n

ξi
|ξ|
.

Exercise 4.4. ⋆
Recall that the distribution S ∈ S ′(R4) defined by

⟨S, φ⟩ := 1

4π

∫
R3

φ(x, |x|)
|x|

dx, φ ∈ S(R4),

is a fundamental solution of the wave operator □. Show that, given f ∈ E ′(R4), u := S ⋆ f
is the only solution to □u = f which is supported in R3 × (t0,∞) for some t0 > 0.

Solution: Assume there exists another solution ũ ∈ S ′(R4) supported in R3 × (t′0,+∞) for some
t′0. Denoting w := u− ũ, which is supported in R3 × (t′′0,+∞) and satisfies □w = 0, we have

w = δ0 ⋆ w = (S ⋆□ δ0) ⋆ w.

Let now Θ ∈ C∞
c (B2(0)) with Θ ≡ 1 on B1(0), and define Θi(x) = Θ(x/i), i ∈ N. Then Θi ≡ 1 on

Bi(0) and Θi ≡ 0 on B2i(0)
c. This gives

(ΘiS︸︷︷︸
∈E ′

⋆□ δ0︸︷︷︸
∈E ′

) ⋆ w︸︷︷︸
∈S′

= ΘiS ⋆ (□ δ0 ⋆ w) = ΘiS ⋆□w = 0 = ΘiS ⋆ 0 = 0. (1)

Moreover there holds
□ (ΘiS) = □S = δ0 in D′(Bi(0)) ,

and
□ (ΘiS) = 0 in D′(B2i(0)

c).

Thus □ (ΘiS) = δ0 + hi for a distribution hi supported in B2i(0) \Bi(0) ∩Λ+, where Λ+ = suppS
denotes the positive light cone. Let now φ ∈ C∞

c (R4) with suppφ ⊂ B4
R(0). Since

⟨(ΘiS ⋆□δ0) ⋆ w, φ⟩ = ⟨□ΘiS, w̌ ⋆ φ⟩ (2)
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and
supp w̌ ⊂ {(x, t), t < −t′′0},

this implies
supp (w̌ ⋆ φ) ⊂ {(x, t), t ≤ −t′′0 +R} .

On the other hand, supphi ⊆ R4 \Bi ∩ Λ+ = {(x, t) : t = |x| > i/
√
2}. Thus

⟨hi, w̌ ⋆ φ⟩E ′,C∞ = 0

for i large enough. Combining the above we have for i large enough

0 =
〈
□Θi

T
4π ρ , w̌ ⋆ φ

〉
= ⟨δ0 + hi, w̌ ⋆ φ⟩

↑
(1) , (2)

= ⟨δ0, w̌ ⋆ φ⟩ = ⟨δ0, ⟨w(−y), φ(x− y)⟩⟩ = ⟨w,φ⟩.

Hence we have proved that w = u− ũ = 0 in D′(R4). This holds as well in S ′(R4) since C∞
c (Rn) is

dense in S(Rn).

Exercise 4.5. ⋆

(a) Show that the formal solution to the heat equation with initial data f ∈ S ′(Rn) obtained
in the lecture,

u(t, x) =
1

(4πt)n/2

(
e−|·|2/4t ⋆ f

)
(x) (†)

satisfies the initial condition in the following sense:

u(t, ·) t→0−−→ f in S ′(Rn). (IC)

Solution: Recall that, in Fourier, the solution is given by

û(t) = e−t|ξ|2 f̂ ,

where we are multiplying f̂ ∈ S ′(Rn) with a Gaussian, which is a Schwartz function. We need to
prove that, given ψ ∈ S(Rn),

⟨f̂ , e−t|ξ|2ψ⟩ = ⟨e−t|ξ|2 f̂ , ψ⟩ t→0−−→ ⟨f̂ , ψ⟩,

so it suffices to show that e−t|ξ|2ψ → ψ in S. First of all, when we do not take any derivatives, we
have to prove that given m ∈ N and ε > 0, for t small enough,

|ξ|m(1− e−t|ξ|2)|ψ(ξ)| ≤ ε ∀ξ ∈ Rn. (1)
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Let R > 0 so that |ξ|m|ψ|(ξ) ≤ ε for all ξ with |ξ| > R. Then clearly (1) holds on Rn \BR for every
t, and it also holds on BR for t small enough thanks to the fact that 1− e−t|ξ|2 ≤ 1− e−tR2 → 0.

To prove convergence in the Schwartz space, we also have to show that for every α ∈ Nn with

|α| ≤ m, |ξ|m∂α
(
(1− e−t|ξ|2)ψ(ξ)

)
→ 0 uniformly in Rn. One can easily see by induction that for

every such α,

|ξ|m∂α
(
(1− e−t|ξ|2)ψ(ξ)

)
= |ξ|m(1− e−t|ξ|2)∂αψ(ξ) + |ξ|m

∑
|β|≤m

t pβ(t, ξ)e
−t|ξ|2∂βψ(ξ),

where the pβ are polynomials in t and ξ coming from differentiating the exponential. We have
already shown uniform convergence of the first summand. For the terms in the second sum we first
bound, for t ≤ 1, pβ(t, ξ) ≤ C(1 + |ξ|k) for some k, and then

t|ξ|m |pβ(t, ξ)|e−t|ξ|2 |∂βψ(ξ)| ≤ t|ξ|m (1 + |ξ|k)|∂βψ(ξ)| ≤ CN2m+k(ψ)t
t→0−−→ 0.

(b) Show rigorously that, if u ∈ C1(R+, L1(Rn)) satisfies (IC) for some f ∈ L1(Rn) and also

∂t⟨u, φ⟩ = ⟨∆u, φ⟩ ∀φ ∈ S(Rn),

then u must be given by the formula (†) and in particular it is unique in this class.

Solution: Let û(t, x) be the Fourier transform of u in space; since u(t, ·) ∈ L1 for each t, it follows
that û(t, ·) is continuous for each t; the continuous differentiability in t imply that t ∈ R+ 7→
û(t, ·) ∈ C0(Rn) is also C1, and in particular ∂tû can be computed pointwise.

Fourier-transforming the equation, we get that

⟨∂tû, ψ⟩ = ∂t⟨û, ψ⟩ = −⟨|ξ|2û, ψ⟩ ∀ψ ∈ S(Rn),

so since û and ∂tû are continuous we get that ∂tû(t, ξ) = −|ξ|2û(t, ξ) pointwise for all t > 0 and
ξ ∈ Rn. Solving the ODE we have that û(t, ξ) = c(ξ)e−t|ξ|2 for some constant c(ξ) such that
limt→0 û(t, ξ) = c(ξ). The initial condition becomes also

⟨c(·), ψ⟩ = lim
t→0

⟨û(t, ·), ψ⟩ = ⟨f̂ , ψ⟩,

from which it follows that û(t, ξ) = e−t|ξ|2 f̂(ξ). The equation (†) now follows from the formula for
the convolution, and this determines u uniquely.

6 / 6


