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Exercise 4.1. %
Let T € §'(R™) and S € &'(R"), and recall that we defined T'x S, S+« T € §'(R") as

<T*S7 (,0> = <T,S*g0>3/75 and <S*T, (,0> = <S,T*SO>€/7COO
respectively, for ¢ € S(R™).
(a) Let (xc)e=0 be a sequence of mollifiers as usual, and for S € £&'(R"), define S. := S*x. €
C>®(R™). Show that, if ¢ € S(R"), then

Sexp % Sxgp in S(R").

Solution: We have that

Sexp(x) = (Se; p(x =) = (Sxxe, oz =) = (5, Xe * (p(x =), = (5, (xe x ) (z =),
because (xe * p(z — ) (y) = (xe * ¢)(x — y). Since 0%(S; * ) = Sz x 0%p, it suffices to prove that
Vo € S(R™) and any 8 € N,

2% (S, (xe x ) (z — ) — (S, oz — N)| > 0.

sup
z€R™

Let p be the order of S. Since K :=supp S C B,(0) is compact, there exists a constant C's > 0,such
that

(S, ) < Cs Y 10"¢poe(r), Y € S(R™).

lal<p
Hence we have for any x € R",
|27 ((S, (xe x )@ =) = (S, (@ =) [ < Cs D> 27 ((xe % 0%0) (@ = y) — 0" (@ — ) | oo x0)-
laj<p
Let 6 > 0 and R > 2p > 0 to be fixed later on. For z € R™ \ Br(0) we bound
2 (S, xe x p(z = ) — (S, p(z — ')>)‘ <Cs Y 127 (xe % 0%0) (@ — y) — 0"p(x — ) || Loo (5, (0))-
la|<p

Observe that for |z| > R > 2p and y € B,(0) one has 2|z| > |z —y| > |z|/2 and also

|(Oxe x0%0) (& = )| < Ixellrrey 10%@lL(Byse@)) = 10"l (Byse @) < Clal ™ Npra ().

Hence we have for any |a| < p

Cs 3 le” (e » °0)w = 1) = 00 =) g8 | g o < o B Npra(9)
|o|<p ¢

We choose R such that C, R™1 Np11(¢) < §/2. Being R now fixed, on Bpr,(0) the convergence
of xe x 0%p towards 0% is uniform, hence

Cs » H 127 ((xe x %) (x — y) — 0%p(a = y)) | Le=(5,(0)) H

2 L2 (Br(0))

< CsRI YT (ke % 0%9) (2) = 0°0() | o (3,0 < 02

la|<p

for £ small enough and we are done.
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(b) Show that SxT =T xS whenever T' € §'(R") and S € £'(R"). To do this, first prove
it for S. in place of S, and then use the first part (applied to S) to conclude.

Solution: Let us prove this formula first for S; € C2°(R"):

(So % T, 0) = (ST x o) = /Se(x)(T*cp)(x) d = /Ss(x)@", oz — ) da

_ <T,/S€(m)go(m - -)dx> - <T,/S5(x)g0(x + ~)d33> = (T, 8. % p) = (T* 5¢,0).

where we have exchanged T' and the integral of Schwartz functions parametrized by x, and we also
have used the equality

[ 8:@ee+9)do = [ S(-ahpla+y)de =" [ Sty - 2)dz = S (o)

Now fix ¢ € S(R™) and observe that

e—0 =

(Sex T, ) = (Se, Tx 0) = (S, xe * (T x 0)) == (S, (T % ¢)) = (ST, )

since xe *x (Tx @) = T xp € C®(R™) and S € £'(R"). On the other hand,

e—0

(T Sz, ) = (T, Sc xp) —= (T, S x0) = (T xS, )

by part (a) and because T € S'(R™). The result follows.

Exercise 4.2.

For each 0 < a < n, show that the function f(z) = |z|™® defines a tempered distribution
and compute its Fourier transform.

Hint: first consider v > n/2, show that f is an L} . function and apply Exercise 3.5 to
deduce that f (&) = v[¢]? for some 8,7 € R with 3 explicit. In order to find =, test against
a Gaussian e~ 1#*/2, integrate in polar coordinates and relate the resulting expression to the
I’ function. Argue for a < n/2 using the inverse Fourier transform and finally for a = n/2
by approximation.

Solution: If n/2 < v < n, then f(z) = |z]7* = |z|™“X{ju/<1} + 2]~ *X{Jz)>13 € L' + L?, s0 f can
be written as the sum of a continuous function vanishing at infinity (and hence in L) and an L?
function, and therefore f € S’ (R™)NLL . (R™). Since f is radially symmetric and (—a)-homogeneous
(as a distribution), fis radially symmetric and ( n + a)-homogeneous, and using part (d) and the
fact that f € L] . we get that f(§) Tn, €|~ for a constant Yn,a € C.

In order to find 7, o, we test against g(z) = e~1e*/2 with g(&) = e1€1?/2,

[ talree e s o [ jermerele g
n RT’L
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On the left we have, using the change of variables s = r2/2,

oo 0
—a _—|xl? —a —r2 _ n—a_ 1 _
/ |z| "% 1! /de:/ e P nw, ™ ldr:nwn/ (25)72 le7*ds
n 0 0

= nwp2 2 0 (n ; a)

and similarly

/ €~ (=) 1272 g — g 2" 1T (”—(3—00) w2571 (3) ’
Rn

from which we deduce .
nw,2 2 T ("z%) _ Qg—ar (%)

nw,22 T (%) I'(%)

Thanks to the Fourier inversion formula, we get for free that the Fourier transform of |z|™% is
fy,;n_ayf\*(”*a) for 0 < a < n/2. Finally, for a = n/2, choose a sequence o; — a and use the fact

Tn,a =

that |z|~% — |z|=® and |¢]~(®~%) — |¢|=(®=®) in &’ (using the dominated convergence theorem
when we test against ¢ € S), together with the continuity of the Fourier transform with respect to
weak convergence of tempered distributions.

Exercise 4.3.

:l:‘.
Show that, for each n > 2 and 1 < i < n, p.v. ||Tz+1 defines a tempered distribution and
x
compute its Fourier transform.
Hint: use the previous exercise.
; 1
Solution: We claim that p.v. ’TUTZH = 178$i|x]1*", where |z|'7" € S’(R") and we are taking
x -n
the distributional derivative. Indeed, for ¢ € S(R"),
/ Lgo(x) dz = ! / O, |z|* "p(x) do = ! / div(es|z|' ™) p(x) da
= i = )
{laf>e) |2]"* 1 =1 J{ja>e) 1 =1 Jija>e)
1
= / lz|' " p(z)e; - v(z) do(z) — . / 2| "e; - V(z) da
OB =V J{jz|>e}
xX; 1

=g " — o(x) — —— x| "0, p(z) d.
= [ e o) aote) o [ el nete)d

]

Here we have subtracted ¢(0) thanks to the fact that x;/|x| is odd. The first term is bounded in
absolute value by

clon / o(@) — p(0)do(z) < e e CenL 20 ¢,
OB:
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whereas the fact that |z|' =" is integrable around the origin allows us to pass to the limit the second
term:
- || " O p(x) Az — — (27", Onyp) = 57— (O [ ™", ) -
1—n {|z|>€} 1—n 1—7’L< >

This proves the claim. Denote f(z) = |z|'~". We have by Exercise 3.7(¢) that f(£) = y|¢|~* with

o T(3)
Y =TYnn-1= 21_5 nE :
r(%F)
It follows that
7z 1 — L= Y&
— ] 1—n — . = —_.
p.Vv. ’x‘n—I—l (f) 1_n6x1|33| (5) 1_nZ£1f(§) Zl—n\f

Exercise 4.4. w
Recall that the distribution S € §’(R?) defined by

<Sa ‘20> = i/R3 qu;’ Y E 8(R4>a

 A4n ||

is a fundamental solution of the wave operator 0. Show that, given f € &'(R?), u:= S % f
is the only solution to Cu = f which is supported in R? x (4, 00) for some ¢y > 0.

Solution: Assume there exists another solution 4 € S'(R*) supported in R? x (#), +-00) for some
ty. Denoting w := u — 1, which is supported in R3 x (], +00) and satisfies Jw = 0, we have

w=7dy*w=(S+x0dp) xw.

Let now © € C2°(B2(0)) with © =1 on B;(0), and define ©;(z) = ©(z/i), i € N. Then ©; =1 on
B;(0) and ©; = 0 on By;(0)¢. This gives

(@iS*D(SO)* w :@iS*(D(So*w):@iS*Dw:0:@iS*O:O. (1)
& & cS’
e&’ &’

Moreover there holds
0(;5) =08 = do in D/(BZ-(O)) ,

and
O (@ZS) =0 in D/(BQZ‘(O)C).

Thus 0 (0;5) = g + h; for a distribution h; supported in Bs;(0) \ B;(0) N AT, where AT = supp S
denotes the positive light cone. Let now ¢ € C2°(R?) with supp ¢ C B#(0). Since

(0,5 x0dg) xw, p) = (dO;S, b * @) (2)
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and
supp W C {(x,t), t < —t(},

this implies
supp (W * ) C {(x,t),t < —tg + R} .

On the other hand, supp h; C R*\ B; N A+ = {(x,t) : t = |z| > i/v/2}. Thus
(hi, W * p)er,coe =0

for i large enough. Combining the above we have for i large enough

0 = <D®Z‘%p, 11}*(p> = <50—|—hi, ?D*(p)

1), (2)

= (8o, W * ) = (o, (w(=y), p(z —y))) = (w, ).

Hence we have proved that w = u — @ = 0 in D’(R*). This holds as well in S’(R*) since C2°(R") is
dense in S(R™).

Exercise 4.5. %

(a) Show that the formal solution to the heat equation with initial data f € S’(R™) obtained
in the lecture,

wt,7) = e (/1) @) (M

satisfies the initial condition in the following sense:

u(t,) 2% F 0 in S'(RM). (1C)

Solution: Recall that, in Fourier, the solution is given by

ORI

where we are multiplying f € §'(R™) with a Gaussian, which is a Schwartz function. We need to
prove that, given ¢ € S(R"),

(f, e ePy) = (7P fypy L20 (F ),

so it suffices to show that e‘t|§|2¢1 — 1 in S. First of all, when we do not take any derivatives, we
have to prove that given m € N and € > 0, for ¢ small enough,

™1 — e’ p(e)| <& VEER™ (1)
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Let R > 0 so that [£|™]1](§) < e for all £ with |£] > R. Then clearly (1) holds on R™\ Bp for every
t, and it also holds on Bp for ¢t small enough thanks to the fact that 1 — e—tlel? <1-— e~tR* 0.

To prove convergence in the Schwartz space, we also have to show that for every a € N” with
la| < m, |€]™O¢ ((1 - e‘t‘5|2)¢(§)) — 0 uniformly in R”. One can easily see by induction that for

every such «,

60" (1= e™F)p(&)) = lel™ (1 = e F)omp(e) + 6" S tpalt e T (e),

[B]<m

where the pg are polynomials in ¢ and { coming from differentiating the exponential. We have
already shown uniform convergence of the first summand. For the terms in the second sum we first
bound, for t < 1, pg(t, &) < C(1 + |¢|¥) for some k, and then

t—0

tlel™ [pa(t, €)|e 1P |07 (€)] < te™ (1 + |€[)|07(€)] < CNamr ()t =% 0.

(b) Show rigorously that, if u € C*(R*, L'(R")) satisfies (IC) for some f € L*(R") and also
at<u7 §0> = <Au7 (10> VSD € SGR”))

then u must be given by the formula (f) and in particular it is unique in this class.

Solution: Let 4(t, ) be the Fourier transform of u in space; since u(t,-) € L! for each t, it follows
that 4(t,-) is continuous for each t; the continuous differentiability in ¢ imply that t € RT —
a(t,-) € CO(R™) is also C!, and in particular ;@ can be computed pointwise.

Fourier-transforming the equation, we get that
(O, ) = (i, 9) = —(|EPa, ) Vo € S(R™),

so since @ and ;0 are continuous we get that 9yu(t, &) = —[¢|?a(t, &) pointwise for all ¢+ > 0 and
¢ € R*. Solving the ODE we have that (¢, &) = ¢(£)e €l for some constant ¢(£) such that
limy_,0 0(t, &) = ¢(£). The initial condition becomes also

<C()7¢> = hm<ﬁ(t7 )ﬂﬁ) = <f7 ¢>7

t—0

from which it follows that a(t, &) = e ¢* f(¢). The equation (1) now follows from the formula for
the convolution, and this determines u uniquely.
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