Exercise 4.1. \bigstar

Let $T \in \mathcal{S}'(\mathbb{R}^n)$ and $S \in \mathcal{E}'(\mathbb{R}^n)$, and recall that we defined $T \star S, S \star T \in \mathcal{S}'(\mathbb{R}^n)$ as

$$\langle T \star S, \varphi \rangle = \langle T, \check{S} \star \varphi \rangle_{\mathcal{S}', \mathcal{S}}$$
 and $\langle S \star T, \varphi \rangle = \langle S, \check{T} \star \varphi \rangle_{\mathcal{E}', C^{\infty}}$

respectively, for $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

(a) Let $(\chi_{\varepsilon})_{\varepsilon>0}$ be a sequence of mollifiers as usual, and for $S \in \mathcal{E}'(\mathbb{R}^n)$, define $S_{\varepsilon} := S \star \chi_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$. Show that, if $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then

$$S_{\varepsilon} \star \varphi \xrightarrow{\varepsilon \to 0} S \star \varphi \quad \text{in } \mathcal{S}(\mathbb{R}^n).$$

Solution: We have that

 $S_{\varepsilon} \star \varphi(x) = \langle S_{\varepsilon}, \ \varphi(x - \cdot) \rangle = \langle S \star \chi_{\varepsilon}, \ \varphi(x - \cdot) \rangle = \langle S, \check{\chi}_{\varepsilon} \star (\varphi(x - \cdot)) \rangle, = \langle S, (\chi_{\varepsilon} \star \varphi)(x - \cdot) \rangle,$

because $(\check{\chi}_{\varepsilon} \star \varphi(x - \cdot))(y) = (\chi_{\varepsilon} \star \varphi)(x - y)$. Since $\partial^{\alpha}(S_{\varepsilon} \star \varphi) = S_{\varepsilon} \star \partial^{\alpha}\varphi$, it suffices to prove that $\forall \varphi \in \mathcal{S}(\mathbb{R}^n)$ and any $\beta \in \mathbb{N}^n$,

$$\sup_{x \in \mathbb{R}^n} \left| x^{\beta} \left(\langle S, (\chi_{\varepsilon} \star \varphi)(x - \cdot) \rangle - \langle S, \varphi(x - \cdot) \rangle \right) \right| \xrightarrow{\varepsilon \to 0} 0.$$

Let p be the order of S. Since $K := \operatorname{supp} S \subset B_{\rho}(0)$ is compact, there exists a constant $C_S > 0$, such that

$$|\langle S, \psi \rangle| \leq C_S \sum_{|\alpha| \leq p} \|\partial^{\alpha} \psi\|_{L^{\infty}(K)}, \quad \forall \psi \in \mathcal{S}(\mathbb{R}^n).$$

Hence we have for any $x \in \mathbb{R}^n$,

$$|x^{\beta} \left(\langle S, (\chi_{\varepsilon} \star \varphi)(x - \cdot) \rangle - \langle S, \varphi(x - \cdot) \rangle \right) | \leq C_{S} \sum_{|\alpha| \leq p} \|x^{\beta} \left((\chi_{\varepsilon} \star \partial^{\alpha} \varphi)(x - y) - \partial^{\alpha} \varphi(x - y) \right) \|_{L_{y}^{\infty}(K)}.$$

Let $\delta > 0$ and $R > 2 \rho > 0$ to be fixed later on. For $x \in \mathbb{R}^n \setminus B_R(0)$ we bound

$$\left|x^{\beta}\left(\langle S, \chi_{\varepsilon} \star \varphi(x-\cdot)\rangle - \langle S, \varphi(x-\cdot)\rangle\right)\right| \leq C_{S} \sum_{|\alpha| \leq p} \|x^{\beta}\left((\chi_{\varepsilon} \star \partial^{\alpha}\varphi)(x-y) - \partial^{\alpha}\varphi(x-y)\right)\|_{L_{y}^{\infty}(B_{\rho}(0))}.$$

Observe that for $|x| > R > 2\rho$ and $y \in B_{\rho}(0)$ one has 2|x| > |x - y| > |x|/2 and also

$$|(\chi_{\varepsilon} \star \partial^{\alpha} \varphi)(x-y)| \le ||\chi_{\varepsilon}||_{L^{1}(\mathbb{R}^{n})} ||\partial^{\alpha} \varphi||_{L^{\infty}(B_{\rho+\varepsilon}(x))} = ||\partial^{\alpha} \varphi||_{L^{\infty}(B_{\rho+\varepsilon}(x))} \le C|x|^{-1} \mathcal{N}_{p+1}(\varphi).$$

Hence we have for any $|\alpha| \leq p$

$$C_S \sum_{|\alpha| \le p} \left\| \| x^{\beta} \left((\chi_{\varepsilon} \star \partial^{\alpha} \varphi)(x-y) - \partial^{\alpha} \varphi(x-y) \right) \|_{L^{\infty}_{y}(B_{\rho}(0))} \right\|_{L^{\infty}_{x}(\mathbb{R}^n \setminus B_R(0))} \le C_p R^{-1} \mathcal{N}_{p+1}(\varphi) .$$

We choose R such that $C_p R^{-1} \mathcal{N}_{p+1}(\varphi) < \delta/2$. Being R now fixed, on $B_{R+\rho}(0)$ the convergence of $\chi_{\varepsilon} \star \partial^{\alpha} \varphi$ towards $\partial^{\alpha} \varphi$ is uniform, hence

$$C_{S} \sum_{|\alpha| \le p} \left\| \left\| x^{\beta} \left((\chi_{\varepsilon} \star \partial^{\alpha} \varphi)(x - y) - \partial^{\alpha} \varphi(x - y) \right) \right\|_{L_{y}^{\infty}(B_{\rho}(0))} \right\|_{L_{x}^{\infty}(B_{R}(0))} \\ \le C_{S} R^{|\beta|} \sum_{|\alpha| \le p} \left\| \left((\chi_{\varepsilon} \star \partial^{\alpha} \varphi)(z) - \partial^{\alpha} \varphi(z) \right) \right\|_{L_{z}^{\infty}(B_{R+\rho}(0))} \le \delta/2$$

for ε small enough and we are done.

(b) Show that $S \star T = T \star S$ whenever $T \in \mathcal{S}'(\mathbb{R}^n)$ and $S \in \mathcal{E}'(\mathbb{R}^n)$. To do this, first prove it for S_{ε} in place of S, and then use the first part (applied to \check{S}) to conclude.

Solution: Let us prove this formula first for $S_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$:

$$\begin{split} \langle S_{\varepsilon} \star T, \varphi \rangle &= \langle S_{\varepsilon}, \check{T} \star \varphi \rangle = \int S_{\varepsilon}(x) (\check{T} \star \varphi)(x) \, \mathrm{d}x = \int S_{\varepsilon}(x) \langle \check{T}, \varphi(x - \cdot) \rangle \, \mathrm{d}x \\ &= \left\langle \check{T}, \int S_{\varepsilon}(x) \varphi(x - \cdot) \, \mathrm{d}x \right\rangle = \left\langle T, \int S_{\varepsilon}(x) \varphi(x + \cdot) \, \mathrm{d}x \right\rangle = \left\langle T, \check{S}_{\varepsilon} \star \varphi \right\rangle = \left\langle T \star S_{\varepsilon}, \varphi \right\rangle, \end{split}$$

where we have exchanged \check{T} and the integral of Schwartz functions parametrized by x, and we also have used the equality

$$\int S_{\varepsilon}(x)\varphi(x+y)\,\mathrm{d}x = \int \check{S}_{\varepsilon}(-x)\varphi(x+y)\,\mathrm{d}x \stackrel{z=-x}{=} \int \check{S}_{\varepsilon}(z)\varphi(y-z)\,\mathrm{d}z = \check{S}_{\varepsilon}\star\varphi(y).$$

Now fix $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and observe that

$$\langle S_{\varepsilon} \star T, \varphi \rangle = \langle S_{\varepsilon}, \check{T} \star \varphi \rangle = \langle S, \chi_{\varepsilon} \star (\check{T} \star \varphi) \rangle \xrightarrow{\varepsilon \to 0} \langle S, (\check{T} \star \varphi) \rangle = \langle S \star T, \varphi \rangle$$

since $\chi_{\varepsilon} \star (\check{T} \star \varphi) \to \check{T} \star \varphi \in C^{\infty}(\mathbb{R}^n)$ and $S \in \mathcal{E}'(\mathbb{R}^n)$. On the other hand,

$$\langle T \star S_{\varepsilon}, \varphi \rangle = \langle T, \check{S}_{\varepsilon} \star \varphi \rangle \xrightarrow{\varepsilon \to 0} \langle T, \check{S} \star \varphi \rangle = \langle T \star S, \varphi \rangle$$

by part (a) and because $T \in \mathcal{S}'(\mathbb{R}^n)$. The result follows.

Exercise 4.2.

For each $0 < \alpha < n$, show that the function $f(x) = |x|^{-\alpha}$ defines a tempered distribution and compute its Fourier transform.

Hint: first consider $\alpha > n/2$, show that \hat{f} is an L^1_{loc} function and apply Exercise 3.5 to deduce that $\hat{f}(\xi) = \gamma |\xi|^{\beta}$ for some $\beta, \gamma \in \mathbb{R}$ with β explicit. In order to find γ , test against a Gaussian $e^{-|x|^2/2}$, integrate in polar coordinates and relate the resulting expression to the Γ function. Argue for $\alpha < n/2$ using the inverse Fourier transform and finally for $\alpha = n/2$ by approximation.

Solution: If $n/2 < \alpha < n$, then $f(x) = |x|^{-\alpha} = |x|^{-\alpha} \chi_{\{|x| \le 1\}} + |x|^{-\alpha} \chi_{\{|x|>1\}} \in L^1 + L^2$, so \hat{f} can be written as the sum of a continuous function vanishing at infinity (and hence in L^{∞}) and an L^2 function, and therefore $\hat{f} \in \mathcal{S}'(\mathbb{R}^n) \cap L^1_{\text{loc}}(\mathbb{R}^n)$. Since f is radially symmetric and $(-\alpha)$ -homogeneous (as a distribution), \hat{f} is radially symmetric and $(-n + \alpha)$ -homogeneous, and using part (d) and the fact that $\hat{f} \in L^1_{\text{loc}}$ we get that $\hat{f}(\xi) = \gamma_{n,\alpha} |\xi|^{-(n-\alpha)}$ for a constant $\gamma_{n,\alpha} \in \mathbb{C}$.

In order to find $\gamma_{n,\alpha}$, we test against $g(x) = e^{-|x|^2/2}$, with $\hat{g}(\xi) = e^{-|\xi|^2/2}$.

$$\int_{\mathbb{R}^n} |x|^{-\alpha} e^{-|x|^2/2} \, \mathrm{d}x = \gamma_{n,\alpha} \int_{\mathbb{R}^n} |\xi|^{-(n-\alpha)} e^{-|\xi|^2/2} \, \mathrm{d}\xi.$$

On the left we have, using the change of variables $s = r^2/2$,

$$\int_{\mathbb{R}^n} |x|^{-\alpha} e^{-|x|^2/2} \, \mathrm{d}x = \int_0^\infty r^{-\alpha} e^{-r^2/2} n\omega_n r^{n-1} \, \mathrm{d}r = n\omega_n \int_0^\infty (2s)^{\frac{n-\alpha}{2}-1} e^{-s} \, \mathrm{d}s$$
$$= n\omega_n 2^{\frac{n-\alpha}{2}-1} \Gamma\left(\frac{n-\alpha}{2}\right)$$

and similarly

$$\int_{\mathbb{R}^n} |\xi|^{-(n-\alpha)} e^{-|\xi|^2/2} \,\mathrm{d}\xi = n\omega_n 2^{\frac{n-(n-\alpha)}{2}-1} \Gamma\left(\frac{n-(n-\alpha)}{2}\right) = n\omega_n 2^{\frac{\alpha}{2}-1} \Gamma\left(\frac{\alpha}{2}\right),$$

from which we deduce

$$\gamma_{n,\alpha} = \frac{n\omega_n 2^{\frac{n-\alpha}{2}-1} \Gamma\left(\frac{n-\alpha}{2}\right)}{n\omega_n 2^{\frac{\alpha}{2}-1} \Gamma\left(\frac{\alpha}{2}\right)} = 2^{\frac{n}{2}-\alpha} \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}$$

Thanks to the Fourier inversion formula, we get for free that the Fourier transform of $|x|^{-\alpha}$ is $\gamma_{n,n-\alpha}^{-1}|\xi|^{-(n-\alpha)}$ for $0 < \alpha < n/2$. Finally, for $\alpha = n/2$, choose a sequence $\alpha_j \to \alpha$ and use the fact that $|x|^{-\alpha_j} \rightharpoonup |x|^{-\alpha}$ and $|\xi|^{-(n-\alpha_j)} \rightharpoonup |\xi|^{-(n-\alpha)}$ in \mathcal{S}' (using the dominated convergence theorem when we test against $\varphi \in \mathcal{S}$), together with the continuity of the Fourier transform with respect to weak convergence of tempered distributions.

Exercise 4.3.

Show that, for each $n \ge 2$ and $1 \le i \le n$, p. v. $\frac{x_i}{|x|^{n+1}}$ defines a tempered distribution and compute its Fourier transform. **Hint:** use the previous exercise.

Solution: We claim that p. v. $\frac{x_i}{|x|^{n+1}} = \frac{1}{1-n} \partial_{x_i} |x|^{1-n}$, where $|x|^{1-n} \in \mathcal{S}'(\mathbb{R}^n)$ and we are taking the distributional derivative. Indeed, for $\varphi \in \mathcal{S}(\mathbb{R}^n)$,

$$\begin{split} \int_{\{|x|>\varepsilon\}} \frac{x_i}{|x|^{n+1}} \varphi(x) \, \mathrm{d}x &= \frac{1}{1-n} \int_{\{|x|>\varepsilon\}} \partial_{x_i} |x|^{1-n} \varphi(x) \, \mathrm{d}x = \frac{1}{1-n} \int_{\{|x|>\varepsilon\}} \operatorname{div}(e_i |x|^{1-n}) \varphi(x) \, \mathrm{d}x \\ &= \int_{\partial B_\varepsilon} |x|^{1-n} \varphi(x) e_i \cdot \nu(x) \, \mathrm{d}\sigma(x) - \frac{1}{1-n} \int_{\{|x|>\varepsilon\}} |x|^{1-n} e_i \cdot \nabla \varphi(x) \, \mathrm{d}x \\ &= \varepsilon^{1-n} \int_{\partial B_\varepsilon} (\varphi(x) - \varphi(0)) \frac{x_i}{|x|} \, \mathrm{d}\sigma(x) - \frac{1}{1-n} \int_{\{|x|>\varepsilon\}} |x|^{1-n} \partial_{x_i} \varphi(x) \, \mathrm{d}x. \end{split}$$

Here we have subtracted $\varphi(0)$ thanks to the fact that $x_i/|x|$ is odd. The first term is bounded in absolute value by

$$\varepsilon^{1-n} \int_{\partial B_{\varepsilon}} |\varphi(x) - \varphi(0)| \, \mathrm{d}\sigma(x) \le \varepsilon^{1-n} \cdot \varepsilon \cdot C\varepsilon^{n-1} \xrightarrow{\varepsilon \to 0} 0,$$

3 / 6

whereas the fact that $|x|^{1-n}$ is integrable around the origin allows us to pass to the limit the second term:

$$-\frac{1}{1-n}\int_{\{|x|>\varepsilon\}}|x|^{1-n}\partial_{x_i}\varphi(x)\,\mathrm{d}x\xrightarrow{\varepsilon\to 0} -\frac{1}{1-n}\langle |x|^{1-n},\partial_{x_i}\varphi\rangle = \frac{1}{1-n}\left\langle \partial_{x_i}|x|^{1-n},\varphi\right\rangle.$$

This proves the claim. Denote $f(x) = |x|^{1-n}$. We have by Exercise 3.?(e) that $\hat{f}(\xi) = \gamma |\xi|^{-1}$ with

$$\gamma = \gamma_{n,n-1} = 2^{1-\frac{n}{2}} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}.$$

It follows that

$$\widehat{\mathbf{v}. \mathbf{x}_{i}}_{i}(\xi) = \frac{1}{1-n} \widehat{\partial_{x_{i}}|x|^{1-n}}(\xi) = \frac{1}{1-n} i\xi_{i}\widehat{f}(\xi) = i\frac{\gamma}{1-n}\frac{\xi_{i}}{|\xi|}$$

Exercise 4.4. \bigstar

Recall that the distribution $S \in \mathcal{S}'(\mathbb{R}^4)$ defined by

$$\langle S, \varphi \rangle := \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\varphi(x, |x|)}{|x|} \, \mathrm{d}x, \qquad \varphi \in \mathcal{S}(\mathbb{R}^4),$$

is a fundamental solution of the wave operator \Box . Show that, given $f \in \mathcal{E}'(\mathbb{R}^4)$, $u := S \star f$ is the only solution to $\Box u = f$ which is supported in $\mathbb{R}^3 \times (t_0, \infty)$ for some $t_0 > 0$.

Solution: Assume there exists another solution $\tilde{u} \in \mathcal{S}'(\mathbb{R}^4)$ supported in $\mathbb{R}^3 \times (t'_0, +\infty)$ for some t'_0 . Denoting $w := u - \tilde{u}$, which is supported in $\mathbb{R}^3 \times (t''_0, +\infty)$ and satisfies $\Box w = 0$, we have

$$w = \delta_0 \star w = (S \star \Box \, \delta_0) \star w.$$

Let now $\Theta \in C_c^{\infty}(B_2(0))$ with $\Theta \equiv 1$ on $B_1(0)$, and define $\Theta_i(x) = \Theta(x/i)$, $i \in \mathbb{N}$. Then $\Theta_i \equiv 1$ on $B_i(0)$ and $\Theta_i \equiv 0$ on $B_{2i}(0)^c$. This gives

$$(\underbrace{\Theta_i S}_{\in \mathcal{E}'} \star \underbrace{\Box \, \delta_0}_{\in \mathcal{E}'}) \star \underbrace{w}_{\in \mathcal{S}'} = \Theta_i S \star (\Box \, \delta_0 \star w) = \Theta_i S \star \Box \, w = 0 = \Theta_i S \star 0 = 0. \tag{1}$$

Moreover there holds

$$\Box (\Theta_i S) = \Box S = \delta_0 \qquad \text{in } \mathcal{D}'(B_i(0)) ,$$

and

$$\Box (\Theta_i S) = 0 \qquad \text{in } \mathcal{D}'(B_{2i}(0)^c).$$

Thus $\Box(\Theta_i S) = \delta_0 + h_i$ for a distribution h_i supported in $B_{2i}(0) \setminus B_i(0) \cap \Lambda^+$, where $\Lambda^+ = \operatorname{supp} S$ denotes the positive light cone. Let now $\varphi \in C_c^{\infty}(\mathbb{R}^4)$ with $\operatorname{supp} \varphi \subset B_R^4(0)$. Since

$$\langle (\Theta_i S \star \Box \delta_0) \star w, \varphi \rangle = \langle \Box \Theta_i S, \check{w} \star \varphi \rangle \tag{2}$$

4 / 6

and

supp
$$\check{w} \subset \{(x,t), t < -t_0''\}$$

this implies

$$\operatorname{supp}\left(\check{w}\star\varphi\right)\subset\left\{(x,t),t\leq-t_0''+R\right\}.$$

On the other hand, supp $h_i \subseteq \mathbb{R}^4 \setminus B_i \cap \Lambda^+ = \{(x,t) : t = |x| > i/\sqrt{2}\}$. Thus

 $\langle h_i, \check{w} \star \varphi \rangle_{\mathcal{E}', C^\infty} = 0$

for i large enough. Combining the above we have for i large enough

$$0 = \left\langle \Box \Theta_i \frac{T}{4\pi\rho}, \check{w} \star \varphi \right\rangle = \left\langle \delta_0 + h_i, \check{w} \star \varphi \right\rangle$$

$$\uparrow$$

$$(1), (2)$$

$$= \left\langle \delta_0, \check{w} \star \varphi \right\rangle = \left\langle \delta_0, \left\langle w(-y), \varphi(x-y) \right\rangle \right\rangle = \left\langle w, \varphi \right\rangle.$$

Hence we have proved that $w = u - \tilde{u} = 0$ in $\mathcal{D}'(\mathbb{R}^4)$. This holds as well in $\mathcal{S}'(\mathbb{R}^4)$ since $C_c^{\infty}(\mathbb{R}^n)$ is dense in $\mathcal{S}(\mathbb{R}^n)$.

Exercise 4.5. \bigstar

(a) Show that the formal solution to the heat equation with initial data $f \in \mathcal{S}'(\mathbb{R}^n)$ obtained in the lecture,

$$u(t,x) = \frac{1}{(4\pi t)^{n/2}} \left(e^{-|\cdot|^2/4t} \star f \right)(x) \tag{(†)}$$

satisfies the initial condition in the following sense:

$$u(t,\cdot) \xrightarrow{t \to 0} f \quad \text{in } \mathcal{S}'(\mathbb{R}^n).$$
 (IC)

Solution: Recall that, in Fourier, the solution is given by

$$\hat{u}(t) = e^{-t|\xi|^2} \hat{f},$$

where we are multiplying $\hat{f} \in \mathcal{S}'(\mathbb{R}^n)$ with a Gaussian, which is a Schwartz function. We need to prove that, given $\psi \in \mathcal{S}(\mathbb{R}^n)$,

$$\langle \hat{f}, e^{-t|\xi|^2}\psi\rangle = \langle e^{-t|\xi|^2}\hat{f}, \psi\rangle \xrightarrow{t\to 0} \langle \hat{f}, \psi\rangle,$$

so it suffices to show that $e^{-t|\xi|^2}\psi \to \psi$ in \mathcal{S} . First of all, when we do not take any derivatives, we have to prove that given $m \in \mathbb{N}$ and $\varepsilon > 0$, for t small enough,

$$|\xi|^m (1 - e^{-t|\xi|^2}) |\psi(\xi)| \le \varepsilon \qquad \forall \xi \in \mathbb{R}^n.$$
(1)

5/6

Let R > 0 so that $|\xi|^m |\psi|(\xi) \le \varepsilon$ for all ξ with $|\xi| > R$. Then clearly (1) holds on $\mathbb{R}^n \setminus B_R$ for every t, and it also holds on B_R for t small enough thanks to the fact that $1 - e^{-t|\xi|^2} \le 1 - e^{-tR^2} \to 0$. To prove convergence in the Schwartz space, we also have to show that for every $\alpha \in \mathbb{N}^n$ with $|\alpha| \le m$, $|\xi|^m \partial^\alpha \left((1 - e^{-t|\xi|^2}) \psi(\xi) \right) \to 0$ uniformly in \mathbb{R}^n . One can easily see by induction that for every such α ,

$$|\xi|^{m}\partial^{\alpha}\left((1-e^{-t|\xi|^{2}})\psi(\xi)\right) = |\xi|^{m}(1-e^{-t|\xi|^{2}})\partial^{\alpha}\psi(\xi) + |\xi|^{m}\sum_{|\beta|\leq m}t\,p_{\beta}(t,\xi)e^{-t|\xi|^{2}}\partial^{\beta}\psi(\xi),$$

where the p_{β} are polynomials in t and ξ coming from differentiating the exponential. We have already shown uniform convergence of the first summand. For the terms in the second sum we first bound, for $t \leq 1$, $p_{\beta}(t,\xi) \leq C(1+|\xi|^k)$ for some k, and then

$$t|\xi|^m |p_\beta(t,\xi)| e^{-t|\xi|^2} |\partial^\beta \psi(\xi)| \le t|\xi|^m (1+|\xi|^k) |\partial^\beta \psi(\xi)| \le C\mathcal{N}_{2m+k}(\psi) t \xrightarrow{t\to 0} 0.$$

(b) Show rigorously that, if $u \in C^1(\mathbb{R}^+, L^1(\mathbb{R}^n))$ satisfies (IC) for some $f \in L^1(\mathbb{R}^n)$ and also

$$\partial_t \langle u, \varphi \rangle = \langle \Delta u, \varphi \rangle \qquad \forall \varphi \in \mathcal{S}(\mathbb{R}^n),$$

then u must be given by the formula (\dagger) and in particular it is unique in this class.

Solution: Let $\hat{u}(t, x)$ be the Fourier transform of u in space; since $u(t, \cdot) \in L^1$ for each t, it follows that $\hat{u}(t, \cdot)$ is continuous for each t; the continuous differentiability in t imply that $t \in \mathbb{R}^+ \mapsto \hat{u}(t, \cdot) \in C^0(\mathbb{R}^n)$ is also C^1 , and in particular $\partial_t \hat{u}$ can be computed pointwise. Fourier-transforming the equation, we get that

$$\langle \partial_t \hat{u}, \psi \rangle = \partial_t \langle \hat{u}, \psi \rangle = -\langle |\xi|^2 \hat{u}, \psi \rangle \qquad \forall \psi \in \mathcal{S}(\mathbb{R}^n),$$

so since \hat{u} and $\partial_t \hat{u}$ are continuous we get that $\partial_t \hat{u}(t,\xi) = -|\xi|^2 \hat{u}(t,\xi)$ pointwise for all t > 0 and $\xi \in \mathbb{R}^n$. Solving the ODE we have that $\hat{u}(t,\xi) = c(\xi)e^{-t|\xi|^2}$ for some constant $c(\xi)$ such that $\lim_{t\to 0} \hat{u}(t,\xi) = c(\xi)$. The initial condition becomes also

$$\langle c(\cdot),\psi\rangle = \lim_{t\to 0} \langle \hat{u}(t,\cdot),\psi\rangle = \langle \hat{f},\psi\rangle,$$

from which it follows that $\hat{u}(t,\xi) = e^{-t|\xi|^2} \hat{f}(\xi)$. The equation (†) now follows from the formula for the convolution, and this determines u uniquely.