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Exercise 6.1.
Prove the Heisenberg uncertainty principle: given f ∈ L2(R,C), show that(∫

R
|x|2|f(x)|2 dx

)(∫
R
|ξ|2|f̂(ξ)|2 dξ

)
≥ 1

4

(∫
R
|f(x)|2 dx

)2

=
1

4

(∫
R
|f̂(ξ)|2 dξ

)2

.

For which functions does equality hold?

Hint: consider the integral
∫∞
−∞ xf(x)f ′(x) dx.

Solution: Of course we can assume that f ∈ H1(R), otherwise the left hand side is infinite. We
integrate by parts∫

R
xf(x)f ′(x) dx = −

∫
R
(xf(x))′f(x) dx = −

∫
R
f(x)f(x) dx−

∫
R
xf ′(x)f(x) dx.

Thus ∫
R
|f(x)|2 dx = −

∫
R
x
(
f(x)f ′(x) + f ′(x)f(x)

)
dx = −2Re

∫
R
xf(x)f ′(x) dx.

Now using Cauchy–Schwarz we get∫
R
|f(x)|2 dx ≤ 2

(∫
R
|xf(x)|2 dx

)1/2(∫
R
|f ′(x)|2 dx

)1/2

.

The inequality follows by using Plancherel and the formula f̂ ′(ξ) = iξf̂(ξ).

The equality case follows from the equality in Cauchy–Schwarz: there must exist λ > 0 such
that f ′(x) = −λxf(x) for almost every x. We would like to integrate this ODE and see that
f(x) = ce−λx2/2, but unfortunately we do not have enough regularity to do so. However we can
compute the distributional derivative of f(x)eλx

2/2 and see that it vanishes: let φ ∈ C∞
c (R), then

for almost every x we have

f(x)eλx
2/2φ′(x) = f(x)

(
eλx

2/2φ(x)
)′

− λxf(x)eλx
2/2φ(x)

= f(x)
(
eλx

2/2φ(x)
)′

+ f ′(x)eλx
2/2φ(x) =

(
f(x)eλx

2/2φ(x)
)′
.

Then integrating and using the fact that φ has compact support, we get∫
R
f(x)eλx

2/2φ′(x) dx =

∫
R

(
f(x)eλx

2/2φ(x)
)′

dx = 0,

which means that f(x)eλx
2/2 has zero distributional derivative, and hence (as we saw in the lecture)

it is constant. Thus f is a Gaussian f(x) = ce−λx2/2 (almost everywhere).

Exercise 6.2.
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(a) Show that every u ∈ H−1(R) can be expressed as f + g′ for some functions f, g ∈ L2(R)
(here the prime denotes the distributional derivative).

Solution: We know that

∥u∥2H−1 =

∫
R
|û|2(ξ) 1

1 + ξ2
dξ =

∫
[−1,1]

|û|2(ξ) 1

1 + ξ2
dξ +

∫
R\[−1,1]

|û|2(ξ)
|ξ|2

|ξ|2

1 + ξ2
dξ

is finite. Thus letting

f̂(ξ) := û(ξ)1[−1,1](ξ) and ĝ(ξ) :=
û(ξ)

iξ
1R\[−1,1](ξ),

the above expression together with the bounds

1

1 + ξ2
≥ 1

2
for ξ ∈ [−1, 1],

ξ2

1 + ξ2
≥ 1

2
for ξ ∈ R \ [−1, 1]

shows that f̂ , ĝ ∈ L2(R) and hence they are the Fourier transforms of functions f, g ∈ L2(R). It is
then immediate to check that

f̂ + g′(ξ) = f̂(ξ) + iξĝ(ξ) = û(ξ)1[−1,1](ξ) + û(ξ)1R\[−1,1](ξ) = û(ξ),

hence f + g′ = u in the sense of distributions.

(b) Deduce that for every u ∈ H−1(R) there exists a function v ∈ L2
loc(R) such that v′ = u

in the distributional sense.

Solution: Write u = f + g′ as above. Let

v(x) := g(x) +

∫ x

0
f(y) dy for almost every x ∈ R,

where we interpret
∫ x
0 f(y) dy as −

∫ 0
x f(y) dy in case x < 0.

It is easy to see that x 7→
∫
[0,x] f is continuous—in fact, C1/2 thanks to Cauchy–Schwarz, therefore

the second function is L2
loc and thus v ∈ L2

loc(R) as well. To see that the distributional derivative
of the second term is f , choose R > 0 and set fR := f1[−R,R]. Let also H(y) := 1[0,∞)(y). Then
for x ∈ (−R,R) it holds

fR ⋆ H(x) =

∫
R
fR(y)H(x− y) dy =

∫ x

−∞
fR(y) dy =

∫ x

−R
f(y) dy =

∫ 0

−R
f(y) dy +

∫ x

0
f(y) dy.

Taking distributional derivatives we then have(∫ x

0
f(y) dy

)′
=

(∫ 0

−R
f(y) dy +

∫ x

0
f(y) dy

)′

= (fR ⋆ H)′(x) = fR ⋆ δ(x) = fR(x) = f(x).

Exercise 6.3. ♣
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The goal of this exercise is to reflect about the meaning of the dual of the spaces Hs in terms
of abstract functional analysis.

(a) Let V be a finite-dimensional vector space, and let W ⊊ V be a subspace. Recall that
the inclusion i : W → V induces a dual map i∗ : V ∗ → W ∗, “the restriction to W of linear
functionals on V ”, and that i∗ is surjective and therefore never injective.

Now consider two reflexive Banach spaces V,W and a continuous embedding i : W → V
such that i(W ) ⊊ V but i(W ) is dense in V . Prove that this map induces a continuous
linear map i∗ : V ∗ → W ∗, and that i∗ is injective but never surjective (!).

Think about what this means in the case V = L2(Rn) and W = Hs(Rn) for s > 0.

Solution: Recall that the induced map i∗ : V ∗ →W ∗ is given by

i∗(T )(w) = T (i(w)) for T ∈ V ∗ and w ∈W.

To see injectivity, suppose that i∗(T ) = 0, so that T (i(w)) = 0 for every w ∈ W . Since i(W ) is
dense in V and T is continuous in V , it follows that T vanishes on all of V .

To see that this map is not surjective, we argue by contradiction. Assuming that i∗ is surjective,
since it is injective, the open mapping theorem gives us an inverse map E : W ∗ → V ∗ (that we
can think of as extending linear functionals). Dualizing we obtain a map E∗ : V ∗∗ → W ∗∗. Now
let v ∈ V \ i(W ) and use the reflexivity of W to obtain a vector w ∈ W such that E∗(Φv) = Φw,
where Φ(·) denotes respectively the canonical embedding of V into V ∗∗ and of W into W ∗∗.

We claim that i(w) = v, which is a contradiction. To see that, by Hahn–Banach’s theorem it is
enough to check that for every T ∈ V ∗, T (i(w)) = T (v). But we have indeed

⟨T, v⟩ = ⟨E(i∗(T )), v⟩ = ⟨Φv, E(i∗(T ))⟩ = ⟨E∗(Φv), i
∗(T )⟩ = ⟨Φw, i

∗(T )⟩ = ⟨i∗(T ), w⟩ = ⟨T, i(w)⟩

and the claim follows.

(b) We know that Hs(Rn) is a Hilbert space and therefore it is canonically isomorphic to
its dual, but we have learned that the dual of Hs(Rn) is H−s(Rn). Make these statements
precise in order to avoid a contradiction.

Solution: The isomorphism between the dual of Hs and Hs given by Riesz’s representation theo-
rem is with respect to the scalar product

⟨f, g⟩Hs =

∫
Rn

f̂(ξ)ĝ(ξ)(1 + |ξ|2)s dξ,

which is slightly artificial.

When we say that the dual of Hs is H−s we are using the L2 scalar product, and the precise
claim is that the bilinear form ⟨·, ·⟩L2 : C∞

c (Rn) × C∞
c (Rn) → C extends to a pairing ⟨·, ·⟩ :

Hs(Rn)×H−s(Rn) → C which realizes the dual of each space, that is,

∀T ∈ Hs(Rn)∗ ∃! v ∈ H−s(Rn) s.t. T (u) = ⟨u, v⟩ ∀u ∈ Hs(Rn)

and
∀S ∈ H−s(Rn)∗ ∃!u ∈ Hs(Rn) s.t. S(v) = ⟨u, v⟩ ∀ v ∈ H−s(Rn).
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Exercise 6.4.
Show that every finite Radon measure µ on Rn induces a distribution in Hσ(Rn) for each
σ < −n

2
.

Solution: It is enough to show that the operator φ ∈ C∞
c (Rn) 7→

∫
Rn φdµ extends continuously

to Hs for each s > n
2 , and by density it is enough to show the estimate∣∣∣∣∫

Rn

φdµ

∣∣∣∣ ≤ C∥φ∥Hs(Rn) for all φ ∈ C∞
c (Rn).

But this follows immediately from the embedding Hs(Rn) ↪→ L∞(Rn) ∩ C0(Rn) for s > n
2 .

Exercise 6.5. ⋆
In this exercise we will show that, for every n ≥ 1, there is a function u ∈ Hn/2(Rn) which
is not in L∞(Rn).

(a) Construct a measurable function f : Rn → R with the following properties:

• f > 0 everywhere;

• f /∈ L1(Rn);

•
∫
Rn |f(ξ)|2(1 + |ξ|2)n/2 dξ < +∞.

Hint: use the Ansatz f(ξ) = (1 + |ξ|2)−n/2g(|ξ|) and find a suitable function g.

Solution: Using the Ansatz from the hint, we need to find g > 0 with∫ ∞

0
g(r)(1 + r2)−n/2rn−1 dr = +∞ and

∫ ∞

0
g(r)2(1 + r2)−n/2rn−1 dr < +∞.

We assume that g is bounded in [0, 1] so that the two above requirements simplify to∫ ∞

1
g(r)

dr

r
= +∞ and

∫ ∞

1
g(r)2

dr

r
< +∞.

Using the change of variable r = et this becomes∫ ∞

0
g(et) dt = +∞ and

∫ ∞

0
g(et)2 dt < +∞,

and for example g(et) = 1
1+t works, giving g(r) = 1

1+log r1[1,∞)(r).

(b) Let u be defined by û = f . Show that u ∈ Hn/2(Rn) and u /∈ L∞(Rn).

Hint: try to capture the L1 norm of f by testing against very spread out functions.

Solution: It is clear that u ∈ Hn/2(Rn). Fix φ(ξ) := e−|ξ|2/2 and, for λ > 0, let φλ(ξ) := Dλφ(ξ) =
φ(λξ). We know that φ̂λ(x) = λ−nφ̂(λ−1x) and therefore

∥φ̂λ∥L1(Rn) = λ−n

∫
Rn

∣∣∣φ̂(x
λ

)∣∣∣ dx =

∫
Rn

|φ̂ (y)| dy = ∥φ̂∥L1(Rn) = C
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ETH Zürich
FS 2025

for some constant C. Hence

⟨f, φλ⟩ = ⟨u, φ̂λ⟩ ≤ ∥u∥L∞∥φ̂λ∥L1 ≤ C∥u∥L∞ = C ′

but by the monotone convergence theorem, this implies that∫
Rn

f(ξ) dξ = lim
λ→0

∫
Rn

f(ξ)φλ(ξ) dξ ≤ C ′,

a contradiction.

Exercise 6.6.
Show that for every n ≥ 1 there is no trace operator T : H1/2(Rn

+) → L2(Rn−1).

Hint: think about the estimate that this entails for n = 1.

Solution: Let u ∈ H1/2(R) be the function produced in the previous exercise (for n = 1) which is
not in L∞(R), and let w ∈ C∞

c (Rn−1) be some nonzero function. We consider v(x) = v(x′, xn) :=
w(x′)u(xn), with v̂(ξ) = û(ξn)ŵ(ξ

′). Using the smoothness of w, have that∫
Rn

|v̂|2(ξ)(1 + |ξ|2)1/2 dξ =
∫
Rn

|û|2(ξn)|ŵ|2(ξ′)(1 + |ξ′|2 + |ξn|2)1/2 dξ

≤ C

∫
Rn

|û|2(ξn)
1 + |ξ′|+ |ξn|
(1 + |ξ′|)n+1

dξ

≤ C

∫
Rn

|û|2(ξn)
(1 + |ξ′|)(1 + |ξn|)

(1 + |ξ′|)n+1
dξ

≤ C

∫
Rn−1

dξ′

(1 + |ξ′|)n

∫
R
(1 + |ξn|2)1/2|û|2(ξn) dξn < +∞.

On the other hand, assume that there is such a trace operator. Hence for smooth functions f ∈
C∞
c (Rn) we would have∫

Rn−1

f(x′, 0)φ(x′) dx′ ≤ C∥f∥H1/2(Rn)∥φ∥L2(Rn−1) ∀φ ∈ C∞
c (Rn−1).

Applying this to f(·, t+ ·) and using Fubini, for every ψ ∈ C∞
c (R) we would have∫

Rn

f(x′, xn)φ(x
′)ψ(xn) dx =

∫
R

(∫
Rn−1

f(x′, t)φ(x′) dx′
)
ψ(t) dt

≤ C∥f∥H1/2(Rn)∥φ∥L2(Rn−1)∥ψ∥L1(R) ∀φ ∈ C∞
c (Rn−1),

and since both sides of the equation are continuous in H1/2, by approximation we would get∫
Rn

v(x′, xn)φ(x
′)ψ(xn) dx ≤ C∥v∥H1/2(Rn)∥φ∥L2(Rn−1)∥ψ∥L1(R) ∀φ ∈ C∞

c (Rn−1) ∀ψ ∈ C∞
c (R).

Choosing φ = w above we get the estimate∫
R
u(xn)ψ(xn) dxn ≤ C∥ψ∥L1(R) ∀ψ ∈ C∞

c (R),

and now this extends by continuity to all ψ ∈ L1(R) and shows that u ∈ L∞(R), a contradiction.
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