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Exercise 7.1.
Let V be a Banach space, W ⊂ V a closed linear subspace and v ∈ V \W . Show that there
exists a linear functional ℓ ∈ V ∗ such that ⟨ℓ, v⟩ ≠ 0 but ⟨ℓ, w⟩ = 0 for all w ∈ W . Moreover,
show that one can choose ℓ such that ⟨ℓ, v⟩ = dist(v,W ) and ∥ℓ∥ ≤ 1.

Solution: Let d := dist(v,W ) and define the linear map ℓ0 : W + Rv → R by w + λv 7→ λd. This
is well defined since v /∈ W , and moreover, for λ ̸= 0,

∥w + λv∥ = |λ|
∥∥∥w
λ
+ v

∥∥∥ ≥ |λ|dist(v,W ) = |λd| = |⟨ℓ0, w + λv⟩|,

so that ∥ℓ0∥ ≤ 1. Applying Hahn–Banach we get an extension ℓ : V → R with ∥ℓ∥ ≤ 1 still
vanishing on W . Since W is closed, dist(v,W ) > 0 and hence ⟨ℓ, v⟩ = d > 0.

Exercise 7.2.
Prove that any closed linear subspace of a reflexive Banach space is also reflexive.

Solution: Let W be a closed linear subspace of a Banach space V , and let i : W → V denote the
natural inclusion. Then we get a dual map i∗ : V ∗ → W ∗, namely the restriction to W . Given
ϕ ∈ W ∗∗, consider i∗∗ϕ ∈ V ∗∗, namely the composition ϕ ◦ i∗. Since V is reflexive we have that
there exists v ∈ V such that for all ℓ ∈ V ∗, ⟨i∗∗ϕ, ℓ⟩ = ⟨ℓ, v⟩.
We claim that v ∈ W : otherwise, Exercise 7.1 gives us a linear map ℓ ∈ V ∗ such that ⟨ℓ, v⟩ ≠ 0 but
⟨ℓ, w⟩ = 0 for all w ∈ W . This last condition means that i∗ℓ = 0, whence

⟨ℓ, v⟩ = ⟨i∗∗ϕ, ℓ⟩ = ⟨ϕ, i∗ℓ⟩ = 0,

a contradiction. In order to show that this v ∈ W is the desired vector, we first need to show
that i∗ : V ∗ → W ∗ is surjective: given a linear bounded functional ϑ : W → R, the Hahn–Banach
theorem allows us to extend it to some ℓ : V → R, and in particular i∗ℓ = ϑ. Finally, for such
ϑ ∈ W ∗, we have that ⟨ϕ, ϑ⟩ = ⟨ϕ, i∗ℓ⟩ = ⟨i∗∗ϕ, ℓ⟩ = ⟨ℓ, v⟩ = ⟨ϑ, v⟩ and we are done.

Exercise 7.3.
Let (E, ∥ · ∥E) be a Banach space. Prove that E is reflexive if and only if E∗ is reflexive.

Solution: Suppose first that E is reflexive, so that the natural embedding JE : E → E∗∗ is
surjective and hence an isomorphism. This gives us an isomorphism J∗

E : E∗∗∗ → E∗. We claim
that the inverse of this isomorphism is JE∗ : E∗ → E∗∗∗: given x ∈ E and ℓ ∈ E∗, we have that

⟨J∗
EJE∗ℓ, x⟩E∗,E = ⟨JE∗ℓ, JEx⟩E∗∗∗,E∗∗ = ⟨JEx, ℓ⟩E∗∗,E∗ = ⟨ℓ, x⟩E∗,E .

Hence J∗
EJE∗ℓ = ℓ, so JE∗ is also an isomorphism.

Conversely, if E∗ is reflexive, then by what we have shown E∗∗ is also reflexive, and given that
E ⊂ E∗∗ is a closed subspace (as E is Banach), by Exercise 7.2 we have that E is reflexive too.
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Exercise 7.4.
Let E be a Banach space, J : E → E∗∗ the natural embedding into its bidual, and denote
by BE and BE∗∗ the respective closed unit balls. The goal of this exercise is to prove the
following lemma of Goldstine: that J(BE) is dense in BE∗∗ with respect to the weak-*
topology (of E∗∗ with respect to E∗).

(a) Show that it is enough to prove that, given ξ ∈ BE∗∗ , ε > 0, an integer N , and linearly
independent forms ℓ1, . . . , ℓN ∈ E∗,

∃ z ∈ BE s.t. |⟨ℓi, z⟩ − ⟨ξ, ℓi⟩| ≤ ε for i = 1, . . . , N. (⋆)

Solution: The only thing to prove is that one can reduce to the case where ℓ1, . . . , ℓN are linearly
independent: we may suppose that the first n ≤ N of them are linearly independent and the rest
are linear combinations of them. Thus (⋆) for i ≤ n implies (⋆) for i > n up to replacing ε by Cε
for some constant C. The result follows by making ε smaller if necessary.

(b) Let T : E → RN be defined by u 7→ (⟨ℓi, u⟩)Ni=1. Show that T is surjective and that any
map ϕ ∈ E∗ vanishing on kerT is a linear combination of ℓ1, . . . , ℓN .

Solution: If T were not surjective, its image would lie on a hyperplane of RN and therefore there
would exist 0 ̸= (a1, . . . , aN ) ∈ RN such that

⟨a1ℓ1 + · · ·+ aNℓN , u⟩ = a1⟨ℓ1, u⟩+ · · ·+ aN ⟨ℓN , u⟩ = 0 ∀u ∈ E,

contradicting the linear independence of the ℓi. In particular we get ui ∈ E such that T (ui) = ei
for i = 1, . . . , N (here {ei} is the canonical basis of Rn).

Let now ϕ ∈ E∗ vanish on kerT . Given u ∈ E, since u−
∑N

i=1⟨ℓi, u⟩ui lies in kerT , we have that〈
ϕ−

N∑
i=1

⟨ϕ, ui⟩ℓi, u

〉
= ⟨ϕ, u⟩ −

N∑
i=1

⟨ℓi, u⟩⟨ϕ, ui⟩ =

〈
ϕ, u−

N∑
i=1

⟨ℓi, u⟩ui

〉
= 0,

so ϕ =
∑N

i=1⟨ϕ, ui⟩ℓi.

(c) Show that given δ > 0, one can find y ∈ E with ∥y∥ ≤ 1+ δ such that ⟨ℓi, y⟩ = ⟨ξ, ℓi⟩ for
i = 1, . . . , N .

Hint: start with any solution of the system and improve it with the help of Exercise 7.1.

Solution: If ⟨ξ, ℓi⟩ = 0 for all i, then we may trivially choose y = 0 and we are done. Otherwise
part (b) gives us some x ∈ E which satisfies Tx = (⟨ξ, ℓi⟩)i. Denoting K := kerT ⊂ E and
d := dist(x,K), we have that Tx ̸= 0 ⇒ x /∈ K ⇒ d > 0. Exercise 7.1 now gives us a map
ϕ : E → R with norm ∥ϕ∥ ≤ 1 vanishing on K and such that ⟨ϕ, x⟩ = d.

By part (b), ϕ is a linear combination of the ℓi and hence ⟨ϕ, x⟩ = ⟨ξ, ϕ⟩. Then d = ⟨ϕ, x⟩ = ⟨ξ, ϕ⟩ ≤
∥ξ∥∥ϕ∥ ≤ 1 and hence ∃w ∈ K such that ∥x − w∥ ≤ 1 + δ. The choice y = x − w satisfies all the
required properties.

(d) Conclude the proof of Goldstine’s lemma.
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Solution: Let z = (1 + δ)−1y ∈ BE . Then

|⟨ℓi, z⟩ − ⟨ξ, ℓi⟩| =
∣∣(1 + δ)−1⟨ℓi, y⟩ − ⟨ℓi, y⟩

∣∣ = (1− (1 + δ)−1) |⟨ℓi, y⟩|
≤ C(1− (1 + δ)−1)(1 + δ) = Cδ ≤ ε

if δ is chosen small enough.

Exercise 7.5.
We say that a Banach space (E, ∥·∥) is uniformly convex if for every ε > 0 there exists δ > 0
such that for any x, y ∈ E,

∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x− y∥ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

In this exercise we will prove the Milman–Pettis theorem: every uniformly convex Banach
space is reflexive. To do that, fix ξ ∈ E∗∗ with ∥ξ∥ = 1 and ε > 0, let δ > 0 be the
corresponding number from the uniform convexity condition, and choose ℓ ∈ E∗ such that
∥ℓ∥ = 1 and ⟨ξ, ℓ⟩ > 1− δ/2. Moreover let V := {ζ ∈ E∗∗ : ⟨ζ, ℓ⟩ > 1− δ}.
(a) Show that the diameter of V ∩ J(BE) is at most ε.

Solution: Let x, y ∈ BE such that J(x), J(y) ∈ V . Suppose that ∥J(x) − J(y)∥ = ∥x − y∥ ≥ ε.
Then the choice of δ implies that ∥x+ y∥ ≤ 2− 2δ which contradicts the following inequality:

(1− δ) + (1− δ) < ⟨J(x), ℓ⟩+ ⟨J(y), ℓ⟩ = ⟨J(x+ y), ℓ⟩ ≤ ∥J(x+ y)∥ = ∥x+ y∥.

(b) Show that Bε(ξ) ∩ J(BE) ̸= ∅.

Hint: take any J(x) ∈ J(BE) ∩ V and show that ∥J(x)− ξ∥ ≤ ε using Exercise 7.4.

Solution: Since ∥ξ∥ = 1 and V ∋ ξ is a weak-* neighborhood, by Exercise 7.4 we may find x ∈ BE

such that J(x) ∈ V . We know that the function f : E∗∗ → R defined by ∥J(x) − ·∥ is weak-*
lower semicontinuous (as its lower level sets are strongly closed and convex). Since, by part (a),
f−1([0, ε]) contains J(BE) ∩ V , and we have just shown that it is weak-*-closed, it must contain
the weak-* closure of J(BE) ∩ V . Now it is enough to show that ξ is in this closure: this follows
from the fact that, given a weak-* open set W ∋ ξ, again by exercise 7.4, J(BE) ∩ V ∩W ̸= ∅.

(c) Conclude the proof of the Milman–Pettis theorem.

Solution: Since we can take ε > 0 arbitrary in part (b), and since J(E) is a closed subspace of
E∗∗ (as it is Banach), we obtain that ξ ∈ J(E). As ξ was arbitrary, this shows that E is reflexive.

Exercise 7.6.
Let Ω be an open subset of Rn.

(a) Show that L∞(Ω) is not separable.
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Solution: Let x0 ∈ Ω and R > 0 such that BR(x0) ⊂ Ω, and consider the functions 1Br(x0) ∈
L∞(Ω) for 0 < r < R. Then for 0 < r, s < R distinct we have that∥∥1Br(x0) − 1Bs(x0)

∥∥
L∞(Ω)

= 1,

therefore these functions form an uncountable discrete subset and this is impossible in a separable
metric space.

(b) Prove that C∞
c (Ω) is dense in Lp(Ω) for every 1 ≤ p < +∞, and hence that Lp(Ω) is

separable for 1 ≤ p < ∞.

Solution: For the proof of the density of C∞
c (Ω), see Section 3.3 in the script. For the separability,

we know that for each R ∈ N, C0
c (Ω ∩ BR) is separable with respect to the uniform convergence,

so there exist countable dense collections {φj,R}j∈N.
Given f ∈ Lp(Ω), with 1 ≤ p < +∞, and ε > 0, choose R ∈ N such that ∥f∥Lp(Ω\BR) < ε/3 and
then g ∈ C∞

c (Ω ∩BR) with ∥f − g∥Lp(Ω∩BR) ≤ ε/3. Finally choose j such that

φj,R ∈ C0
c (Ω ∩BR) satisfies ∥φj,R − g∥C0(Ω∩BR) ≤

ε

3|BR|1/p
.

We then have that

∥f − φj,R∥Lp(Ω) = ∥f∥Lp(Ω\BR) + ∥f − φj,R∥Lp(Ω∩BR)

= ∥f∥Lp(Ω\BR) + ∥f − g∥Lp(Ω∩BR) + ∥g − φj,R∥Lp(Ω∩BR)

<
ε

3
+

ε

3
+ |BR|1/p∥g − φj,R∥C0(Ω∩BR) ≤ ε

as desired.

Exercise 7.7.
Proof the so-called Littlewood inequality in a measure space (X,µ): given 1 ≤ p0 < p1 ≤ +∞
and t ∈ (0, 1), define pt ∈ [1,+∞] by

1

pt
=

1− t

p0
+

t

p1
;

then for any f ∈ Lp0(X,µ) ∩ Lp1(X,µ) it holds that

f ∈ Lpt(X,µ) with ∥f∥Lpt ≤ ∥f∥1−t
Lp0 ∥f∥tLp1 .

Solution: Let f ∈ Lp0(X,µ)∩Lp1(X,µ) and write |f | = |f |1−t|f |t. Then Hölder’s inequality with
exponents p0/(1− t) and p1/t, which satisfy

1

pt
=

1

p0/(1− t)
+

1

p1/t
,
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gives

∥f∥Lpt ≤
∥∥|f |1−t

∥∥
Lp0/(1−t)

∥∥|f |t∥∥
Lp1/t

=

(∫
X

(
|f |1−t

)p0/(1−t)
dµ

)(1−t)/p0 (∫
X

(
|f |t

)p1/t dµ)t/p1

= ∥f∥1−t
Lp0 ∥f∥tLp1 .
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