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Exercise 8.1.
In this exercise we will show that the range of exponents of the Hausdorff–Young inequality
is sharp. To do that, consider f(x) = e−x2/2 and fix some parameter a > 0 (a = 10 will do).
Then for N ∈ N define

fN(x) :=
N∑
j=1

eixjaf(x− ja).

(a) Compute f̂N .

Solution: We compute directly

f̂N (ξ) =
1√
2π

N∑
j=1

∫
R
e−ixξeixjaf(x− ja) dx =

1√
2π

N∑
j=1

∫
R
e−ix(ξ−ja)f(x− ja) dx

=
1√
2π

N∑
j=1

∫
R
e−i(y+ja)(ξ−ja)f(y) dy =

1√
2π

N∑
j=1

e−ija(ξ−ja)

∫
R
e−iy(ξ−ja)f(y) dy

=
N∑
j=1

e−ijaξei(ja)
2
f̂(ξ − ja) =

N∑
j=1

e−ijaξei(ja)
2
f(ξ − ja),

using that the Fourier transform of a Gaussian is also a Gaussian.

(b) Show that for all p ∈ [1,∞] there is a constant c > 0 such that ∥fN∥Lp(R) ≥ cN1/p and

∥f̂N∥Lp(R) ≥ cN1/p.

Solution: Observe that e−x2/2 ≥ 1
2 for x ∈ [−1, 1]. Then it follows that, for each k ∈ {1, . . . , N}

and x ∈ [ka− 1, ka+ 1],

fN (x) = eixkaf(x− ka) +
∑

1≤j≤N
j ̸=k

eixjaf(x− ja) = eixka

f(x− ka) +
∑

1≤j≤N
j ̸=k

eix(j−k)af(x− ja)


and so, using the fact that |x− ja| ≥ |k − j|a− 1 ≥ |k − j|a/2 if j ̸= k,

|fN (x)| ≥ |f(x− ka)| −
∑
j ̸=k

e−(x−ja)2/2 ≥ 1

2
− 2

∞∑
ℓ=1

e−a2ℓ2/8 ≥ 1

2
− 2

∞∑
ℓ=1

e−a2ℓ/8 ≥ 1

4

if a is large enough (for example a = 10). From this the case p = ∞ is trivial, and the case
1 ≤ p < ∞ follows from the computation∫

R
|fN (x)|p dx ≥

N∑
k=1

∫
[ka−1,ka+1]

|fN (x)|p dx ≥ 2

4p
N = cN.

The same proof works for f̂N , since it has the same expression up to a phase for each summand.

(c) Show that for some constant C > 0, ∥fN∥L1(R) ≤ CN and ∥f̂N∥L1(R) ≤ CN for all N .
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Solution: This follows from the triangle inequality (and similarly for f̂N ):∥∥∥∥∥∥
N∑
j=1

eija·f(· − ja)

∥∥∥∥∥∥
L1(R)

≤
N∑
j=1

∥∥eija·f(· − ja)
∥∥
L1(R) = N∥f∥L1(R) = CN.

(d) Show that for some constant C ′ > 0, ∥fN∥L∞(R) ≤ C ′ and ∥f̂N∥L∞(R) ≤ C ′ for all N .

Solution: This follows from a similar computation to part (b). We do it for fN , since it’s the same
for f̂N . Given x ∈ R, choose k ∈ Z such that ka ≤ x < (k + 1)a. Then it is easy to see that

|fN (x)| ≤
∑
j∈Z

e−(x−ja)2/2 ≤ 2

∞∑
ℓ=0

e−(ℓa)2/2 ≤ 2

∞∑
ℓ=0

e−a2ℓ/2 < +∞.

(e) Conclude that, if p ∈ [1,∞] is such that the Fourier transform is bounded from Lp(R) to
Lp′(R), then necessarily p ≤ 2.

Solution: By interpolation we have that for each p ∈ [1,∞],

∥fN∥Lp(R) ≤ C ′′N1/p. (⋆)

If the Hausdorff–Young inequality is valid for a certain p, putting (⋆) together with part (b) we
would have

cN1−1/p = cN1/p′ ≤ ∥f̂N∥Lp′ ≤ C∥fN∥Lp ≤ CN1/p,

which by letting N → ∞ can only be true if p ≤ 2.

Exercise 8.2.
In this exercise we will prove the “integral Minkowski inequality”: let (X,µ) and (Y, ν) be
two σ-finite measure spaces1 and let f : X × Y → [0,∞) be measurable with respect to the
product measure. Show that for each 1 ≤ p < +∞ it holds:(∫

X

(∫
Y

f(x, y) dν(y)

)p

dµ(x)

)1/p

≤
∫
Y

(∫
X

f(x, y)p dµ(x)

)1/p

dν(y).

Hint: look at what inequality you get when (Y, ν) = ({1, 2},#) and try to replicate the
proof of that inequality from Measure Theory.

Solution: Let F : X → [0,∞] be the µ-measurable function defined by x 7→
∫
Y f(x, y) dν(y), and

1You can just take them to be measurable subsets of Euclidean space with the Lebesgue measure—we
only need that the product measure is well defined and that Tonelli’s theorem holds.
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ETH Zürich
FS 2025

choose g ∈ Lp′(X,µ). Then, using Tonelli’s theorem,∫
X
F (x)g(x) dµ(x) =

∫
X

(∫
Y
f(x, y) dν(y)

)
g(x) dµ(x) =

∫
Y

(∫
X
f(x, y)g(x) dµ(x)

)
dν(y)

≤ ∥g∥Lp′ (X,µ)

∫
Y
∥f(·, y)∥Lp(X,µ) dν(y).

By taking g to be truncations of F p−1 (or by using the dual characterization of the Lp norm) this
implies that F ∈ Lp(X,µ) with norm∥∥∥∥∫

Y
f(·, y) dν(y)

∥∥∥∥
Lp(X,µ)

= ∥F∥Lp(X,µ) ≤
∫
Y
∥f(·, y)∥Lp(X,µ) dν(y),

which is the desired inequality.

Exercise 8.3.
Fix 1 ≤ p ≤ ∞ and suppose that K : (0,∞) × (0,∞) → R satisfies the following two
properties:

• K is homogeneous of degree −1, that is, for λ > 0, K(λx, λy) = λ−1K(x, y).

• it holds that AK :=
∫∞
0

|K(1, y)|y−1/p dy < +∞.

We define the linear operator

(Tf)(x) :=

∫ ∞

0

K(x, y)f(y) dy;

show that ∥Tf∥Lp ≤ AK∥f∥Lp .

Hint: write the function (Tf)(x) as an integral of functions of x depending on some other
parameter, and apply the integral Minkowski inequality.

Solution: We rewrite K(x, y) = x−1K(x, y/x) using the homogeneity condition, and use the
change of variables y = tx:

(Tf)(x) =

∫ ∞

0
K(x, y)f(y) dy =

∫ ∞

0
K
(
1,

y

x

)
f(y)

dy

x
=

∫ ∞

0
K (1, t) f(tx) dt,

hence by Exercise 8.2,

∥Tf∥Lp ≤
∫ ∞

0
∥K (1, t) f(t·)∥Lp dt =

∫ ∞

0
|K(1, t)| ∥f(t·)∥Lp dt.

We have that

∥f(t·)∥pLp =

∫
f(tx)p dx =

∫
f(y)p

dy

t
= t−1∥f∥pLp ,

so substituting above gives

∥Tf∥Lp ≤ ∥f∥Lp

∫ ∞

0
|K(1, t)|t−1/p dt = AK∥f∥Lp .
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Exercise 8.4.

(a) Show the following version of the Hardy inequality: given a measurable function g :
(0,∞) → R and two real numbers 1 ≤ p < ∞ and r > 0,∫ ∞

0

(∫ x

0

|g(y)| dy
)p

x−r−1 dx ≤
(p
r

)p ∫ ∞

0

(y|g(y)|)py−r−1 dy.

Hint: deduce it from the estimate of Exercise 8.3.

Solution: Choose K(x, y) := y−1
1y<x(y/x)

r+1
p and define f(y) := y|g(y)|y−

r+1
p . Then

Tf(x) =

∫ ∞

0
K(x, y)f(y) dy =

∫ x

0
y−1

(y
x

) r+1
p

y|g(y)|y−
r+1
p dy = x

− r+1
p

∫ x

0
|g(y)| dy

The left hand side of the estimate from Exercise 8.3 is

∥Tf∥pLp =

∫ ∞

0

(
x
− r+1

p

∫ x

0
|g(y)| dy

)p

dx =

∫ ∞

0
x−r−1

(∫ x

0
|g(y)|dy

)p

dx

while the right hand side has

∥f∥pLp =

∫ ∞

0
(y|g(y)|)py−r−1 dy

with the constant

AK =

∫ ∞

0
K(1, t)t−1/p dt =

∫ 1

0
t−1t

r+1
p t−1/p dt =

∫ 1

0
t
r
p
−1

dt =
p

r
.

The inequality follows immediately.

(b) Obtain the following more common version of the Hardy inequality: if u : [0,∞) → R is
an absolutely continuous function2 with u(0) = 0, then for any p > 1 it holds∫ ∞

0

(
|u(x)|
x

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

|u′(x)|p dx.

Solution: Just take g = u′ in the above inequality and choose r = p− 1 > 0.

Exercise 8.5.
This exercise assumes familiarity with the Riesz representation theorem for measures and
the Radon–Nikodym theorem.

The goal of this exercise is to give a different proof of the fact that the dual of Lp is Lp′

(where 1 ≤ p < ∞ and 1
p
+ 1

p′
= 1) using two classical theorems from Measure Theory instead

of abstract Functional Analysis. For simplicity we deal with an open set Ω ⊂ Rn, which we

2This just means that u is the primitive of an L1 function.
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write as an increasing union of bounded open sets Ω1 ⊂ Ω2 ⊂ · · · . Let ℓ : Lp(Ω) → R be a
linear bounded functional.

(a) Show that for each j, ℓ naturally defines a linear bounded functional on Cc(Ωj). There-
fore, by the Riesz representation theorem, we get a signed3 Radon measure νj on Ωj.

Solution: Given φ ∈ Cc(Ωj), Hölder’s inequality gives directly the desired estimate:

⟨ℓ, φ⟩ ≤ ∥ℓ∥∥φ∥Lp(Ω) = ∥ℓ∥∥φ∥C(Ωj)|Ωj |1/p.

(b) Show that for every j, |νj| ≪ Ln. Hence, by the Radon–Nikodym theorem we get
measurable functions fj ∈ L1(Ωj) such that dνj = fjdLn. Show also that the functions fj
and fj+1 agree almost everywhere on Ωj and hence they define a global function f ∈ L1

loc(Ω).

Solution: Suppose that A ⊂ Ωj is Borel with |A| = 0. Then ∀ε > 0 there is an open set U ⊂ Ωj

containing A such that |U | ≤ ε. Recall that the total variation of the representing measure is
defined on open sets by

|νj |(U) = sup{⟨ℓ, φ⟩ : φ ∈ Cc(Ωj), |φ| ≤ 1, suppφ ⊆ U}.

The above computation shows that

⟨ℓ, φ⟩ = ∥ℓ∥∥φ∥C(Ωj)|U |1/p ≤ ∥ℓ∥ ε1/p,

so we deduce that |νj |(A) ≤ |νj |(U) ≤ ∥ℓ∥ε1/p and letting ε → 0 follows |νj |(A) = 0. The Radon–
Nikodym theorem now provides us with said functions fj ; moreover, given φ ∈ Cc(Ωj) ⊂ Cc(Ωj+1),∫

Ωj

fjφdLn =

∫
Ωj

φdνj = ⟨ℓ, φ⟩ =
∫
Ωj+1

φdνj+1,=

∫
Ωj

fj+1φdLn

and by the usual approximation argument one deduces that fj ≡ fj+1 almost everywhere on Ωj .

(c) Show that f ∈ Lp′(Ω) and conclude.

Solution: Fix j ∈ N and λ > 0, and consider the function fλ := min(λ, |f |) ∈ L∞(Ωj), so that

gλ := sgn(f)fp′−1
λ ∈ Lp(Ωj). Since p < ∞, we may choose a sequence (φk) ⊂ Cc(Ωj) such that

φk → gλ in Lp(Ωj) and almost everywhere. Notice that fp′

λ ≤ |f |fp′−1
λ = fgλ. Moreover, after

truncating φk if necessary, we may assume that |φk| ≤ λp′−1, so that |fφk| ≤ λp′−1|f | ∈ L1(Ωj).
Then the Dominated Convergence Theorem implies:∫

Ωj

fp′

λ ≤
∫
Ωj

fjgλ = lim
k→∞

∫
Ωj

fjφk = lim
k→∞

⟨ℓ, φk⟩ ≤ lim
k→∞

∥ℓ∥∥φk∥Lp(Ωj)

= ∥ℓ∥∥gλ∥Lp(Ωj) = ∥ℓ∥

(∫
Ωj

f
p(p′−1)
λ

)1/p

= ∥ℓ∥

(∫
Ωj

fp′

λ

)1/p

.

3A signed Radon measure ν is just the difference of two positive (usual) Radon measures ν+ and ν−;
this decomposition is unique if ν+ and ν− are mutually orthogonal, and in this case we denote the total
variation measure by |ν| := ν+ + ν−.
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Dividing both sides we obtain that

∥fλ∥Lp′ (Ωj)
=

(∫
Ωj

fp′

λ

)1−1/p

≤ ∥ℓ∥,

and we get that f ∈ Lp(Ω) by first letting λ → ∞ and then j → ∞ with the monotone convergence
theorem. The fact that f represents ℓ follows from the density of Cc(Ω) in Lp(Ω).
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