
D-MATH
Prof. Tristan Rivière

Functional Analysis II
Sample Solutions Sheet 9

ETH Zürich
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The first three exercises in this series are dedicated to the proof of the general Marcinkiewicz
interpolation theorem (Theorem 4.3 in the script) given in Appendix B of Stein’s book1.

Exercise 9.1.
In this exercise we will prove the following inequality for a non-increasing function h :
(0,∞) → [0,∞): (∫ ∞

0

[t1/ph(t)]q2
dt

t

)1/q2

≤ A

(∫ ∞

0

[t1/ph(t)]q1
dt

t

)1/q1

,

where 0 < p ≤ ∞, 0 < q1 ≤ q2 ≤ ∞ and A is a constant depending on q1, q2 and p.

(a) Show this first for q2 = ∞ (where the left hand side is interpreted as the supremum).

Solution: For every 0 < s < ∞ we have∫ ∞

0
[t1/ph(t)]q1

dt

t
≥

∫ s

s/2
[t1/ph(t)]q1

dt

t
≥

[(s
2

)1/p
h(s)

]q1 ∫ s

s/2

dt

t
= 2−1/p log 2

[
s1/ph(s)

]q1
.

Taking the supremum over s now gives(∫ ∞

0
[t1/ph(t)]q1

dt

t

)1/q1

≥ c sup
0<t<∞

[
t1/ph(t)

]
,

which is the desired inequality.

(b) Then show it for every q1 < q2 < ∞.

Solution: This follows from Hölder’s inequality and part (a):

(∫ ∞

0
[t1/ph(t)]q2

dt

t

)1/q2

≤
[

sup
0<t<∞

t1/ph(t)

]1−q1/q2
[(∫ ∞

0
[t1/ph(t)]q1

dt

t

)1/q1
]q1/q2

≤

[
A

(∫ ∞

0
[t1/ph(t)]q1

dt

t

)1/q1
]1−q1/q2 [(∫ ∞

0
[t1/ph(t)]q1

dt

t

)1/q1
]q1/q2

= A′
(∫ ∞

0
[t1/ph(t)]q1

dt

t

)1/q1

.

Exercise 9.2.
Prove the “second Hardy inequality”: for a measurable function f : (0,∞) → [0,∞), and
numbers p ≥ 1 and r > 0,(∫ ∞

0

(∫ ∞

x

f(y) dy

)p

xr−1 dx

)1/p

≤ p

r

(∫ ∞

0

(yf(y))pyr−1 dy

)1/p

.

1Stein, Elias M. Singular Integrals and Differentiability Properties of Functions, Princeton: Princeton
University Press, 1971. https://doi.org/10.1515/9781400883882
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Hint: recall the proof of the first Hardy inequality (Exercise 8.4).

Solution: As in Exercise 8.4, we will apply Exercise 8.3 but to the function g(y) := f(y)y1+(r−1)/p

and with the choice K(x, y) = 1y>xy
−1(x/y)(r−1)/p, which is clearly homogeneous of degree −1.

Recall that we have (∫ ∞

0
|Tg(x)|p dx

)1/p

≤ AK

(∫ ∞

0
|g(y)|p dy

)1/p

. (1)

where

Tg(x) =

∫ ∞

0
K(x, y)g(y) dy,

and

AK =

∫ ∞

0
|K(1, y)|y−1/p dy =

∫ ∞

0
1y>1y

−1−(r−1)/py−1/p dy =

∫ ∞

1
y−1−r/p dy =

p

r
.

The left hand side of (1) is(∫ ∞

0
|Tg(x)|p dx

)1/p

=

(∫ ∞

0

(∫ ∞

x
f(y)y1+(r−1)/py−1−(r−1)/px(r−1)/p dy

)p

dx

)1/p

=

(∫ ∞

0

(∫ ∞

x
f(y) dy

)p

xr−1 dx

)1/p

and the right hand side gives

AK

(∫ ∞

0
|g(y)|p dy

)1/p

=
p

r

(∫ ∞

0
f(y)pyp(1+(r−1)/p) dy

)1/p

=
p

r

(∫ ∞

0
(yf(y))pyr−1 dy

)1/p

,

so the result follows.

Exercise 9.3.
The goal of this (long) exercise is to prove the general form of the Marcinkiewicz interpolation
theorem. Assume we are given exponents

1 ≤ p0 ≤ q0 ≤ ∞ and 1 ≤ p1 ≤ q1 ≤ ∞ with p0 < p1 and q0 ̸= q1.

Let T be a sub-additive operator defined on Lp0(Rn)+Lp1(Rn) and assume that T is of weak
type (pi, qi) for i = 0, 1, meaning that

Ln({x ∈ Rn : |Tf(x)| > α}) ≤
(
Ai∥f∥Lpi

α

)qi

∀α > 0

in case qi < ∞, and in case qi = ∞, that ∥Tf∥L∞ ≤ Ai∥f∥Lpi . The theorem then states
that, given 0 < θ < 1 and letting

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
,
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then T is of strong type (p, q), meaning that ∥Tf∥Lq ≤ A∥f∥Lp for a constant A depending
on p0, p1, q0, q1 and θ.

We define the parameter σ as

σ =
1/q0 − 1/q

1/p0 − 1/p
=

1/q − 1/q1
1/p− 1/p1

.

For f ∈ Lp(Rn), we define its non-increasing rearrangement f ∗ as in Section 6.6 of the script.
Then, for t > 0, we let

f t(x) :=

{
f(x) if |f(x)| > f ∗(tσ),

0 otherwise

and define ft := f − f t.

(a) Check the following properties (a drawing may help!):

• (f t)∗(y) ≤ f ∗(y) if 0 ≤ y ≤ tσ;

• (f t)∗(y) = 0 if y > tσ.

Solution:

• Clearly |f t| ≤ |f |, so it follows that (f t)∗ ≤ f∗.

• To show that (f t)∗(y) = 0 for y > tσ it is enough to see that |{|f t| > 0}| < y. But
|f t(x)| > 0 ⇒ |f(x)| > f∗(tσ) and therefore

|{|f t| > 0}| ≤ |{|f | > f∗(tσ)}| = |{|f∗| > f∗(tσ)}| ≤ tσ < y.

Here we have used the equality of the distribution functions of f and f∗, and the fact that,
since f∗ is non-increasing, f∗(s) ≤ f∗(tσ) for s ≥ tσ, so |f∗(s)| can be bigger than f∗(tσ)
only for 0 ≤ s < tσ.

(b) Check also that

• (ft)
∗(y) ≤ f ∗(tσ) if y ≤ tσ;

• (ft)
∗(y) ≤ f ∗(y) if y ≥ tσ.

Solution:

• We have that

ft(x) =

{
f(x) if |f(x)| ≤ f∗(tσ)

0 otherwise.

Therefore |ft| ≤ f∗(tσ) and hence (ft)
∗ ≤ f∗(tσ) too.

• Again |ft| ≤ |f | and therefore (ft)
∗ ≤ f∗.

(c) Verify that, if f = f1 + f2, then

(Tf)∗(t) ≤ (Tf1)
∗(t/2) + (Tf2)

∗(t/2).
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Solution: Let λ1 := (Tf1)
∗(t/2) and λ2 := (Tf2)

∗(t/2); then

|{|Tf1| > λ1}| ≤
t

2
and |{|Tf2| > λ2}| ≤

t

2

because the infimum defining the non-increasing rearrangement is actually a minimum. Since
|Tf(x)| ≤ |Tf1(x)|+ |Tf2(x)|, it is immediate to see that

{|Tf | > λ1 + λ2} ⊆ {|Tf1| > λ1} ∪ {|Tf2| > λ2},

so that

|{|Tf | > λ1 + λ2}| ≤ |{|Tf1| > λ1}|+ |{|Tf2| > λ2}| ≤
t

2
+

t

2
= t.

This gives that (Tf)∗(t) ≤ λ1 + λ2 = (Tf1)
∗(t/2) + (Tf2)

∗(t/2).

(d) Show that, if f ∈ Lp(Rn), f t ∈ Lp0 and ft ∈ Lp1 .

Solution: On one hand, clearly ∥f t∥Lp0 (Rn) = ∥(f t)∗∥Lp0 ([0,∞)) and, thanks to (a) and Hölder’s
inequality,

∥(f t)∗∥p0Lp0 ([0,∞)) =

∫ ∞

0
(f t)∗(y)p0 dy ≤

∫ tσ

0
f∗(y)p0 dy

≤
(∫ tσ

0
f∗(y)p dy

)p0/p(∫ tσ

0
dy

)1−p0/p

≤ (tσ)1−p0/p ∥f∗∥p0Lp = (tσ)1−p0/p ∥f∥p0Lp < +∞.

On the other hand, |ft| ≤ f∗(tσ) everywhere, so ft ∈ L∞ and thus ft ∈ Lp1 .

(e) Prove the estimate

(Tf)∗(t) ≤ A0(2/t)
1/q0∥f t∥Lp0 + A1(2/t)

1/q1∥ft∥Lp1 . (2)

Solution: For any λ < (Tf t)∗(t/2), by the definition of the non-increasing rearrangement and the
weak type (p0, q0), we have that

t

2
< |{|Tf t| > λ}| ≤

(
A0∥f t∥Lp0

λ

)q0

,

which gives λ < A0(2/t)
1/q0∥f t∥Lp0 and then, after letting λ ↗ (Tf t)∗(t/2),

(Tf t)∗(t/2) ≤ A0

(
2

t

)1/q0

∥f t∥Lp0 .

Analogously we have

(Tft)
∗(t/2) ≤ A1

(
2

t

)1/q1

∥ft∥Lp1 .

Adding up these two expressions and using part (c) with f = f t + ft yields the estimate.
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(f) Using Exercise 9.1, show that

∥Tf∥Lq ≤ C

(∫ ∞

0

(t1/q(Tf)∗(t))p
dt

t

)1/p

(3)

for a constant C > 0.

Solution: We apply Exercise 9.1 with the function h(t) = (Tf)∗(t) and the exponents q and p ≤ q:(∫ ∞

0
h(t)q dt

)1/q

=

(∫ ∞

0
[t1/qh(t)]q

dt

t

)1/q

≤ A

(∫ ∞

0
[t1/qh(t)]p

dt

t

)1/p

.

The result follows by recalling that ∥Tf∥Lq(Rn) = ∥(Tf)∗∥Lq([0,∞)).

(g) Show that, in order to prove the theorem, it is enough to show the following two estimates:(∫ ∞

0

[t1/q−1/q0∥f t∥Lp0 ]p
dt

t

)1/p

≤ C∥f∥Lp (4)

and (∫ ∞

0

[t1/q−1/q1∥ft∥Lp1 ]p
dt

t

)1/p

≤ C∥f∥Lp . (5)

Solution: Assuming (4) and (5), we have that

∥Tf∥Lq(Rn)

by (3)

≤ C

(∫ ∞

0
(t1/q(Tf)∗(t))p

dt

t

)1/p

by (2)

≤ C

(∫ ∞

0

[
t1/q

(
A0(2/t)

1/q0∥f t∥Lp0 +A1(2/t)
1/q1∥ft∥Lp1

)]p dt
t

)1/p

by Minkowski
≤ C

(∫ ∞

0

[
t1/q−1/q0∥f t∥Lp0

]p dt
t

)1/p

+ C

(∫ ∞

0

[
t1/q−1/q1∥ft∥Lp1

]p dt
t

)1/p

by (4) & (5)

≤ C∥f∥Lp .

(h) Show, using again Exercise 9.1, that

∥f t∥Lp0 ≤ C

∫ tσ

0

y1/p0f ∗(y)
dy

y
. (6)

Solution: We use Exercise 9.1 with the exponents p0 and 1 ≤ p0:

∥f t∥Lp0 = ∥(f t)∗∥Lp0 =

(∫ ∞

0

[
y1/p0(f t)∗(y)

]p0 dy

y

)1/p0

≤ C

∫ ∞

0

[
y1/p0(f t)∗(y)

] dy

y

together with the properties from part (a):∫ ∞

0
y1/p0(f t)∗(y)

dy

y
=

∫ tσ

0
y1/p0(f t)∗(y)

dy

y
≤

∫ tσ

0
y1/p0f∗(y)

dy

y
.
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(i) Prove (4) by using (6) and the Hardy inequality (Exercise 8.4).

Solution: We plug (6) into the integral of (4) and use the change of variables x = tσ:∫ ∞

0
[t1/q−1/q0∥f t∥Lp0 ]p

dt

t
≤ C

∫ ∞

0

[
t1/q−1/q0

∫ tσ

0
y1/p0f∗(y)

dy

y

]p
dt

t

=
C

|σ|

∫ ∞

0

[
x

1/q−1/q0
σ

∫ x

0
y1/p0f∗(y)

dy

y

]p dx
x

= C ′
∫ ∞

0

[
x1/p−1/p0

∫ x

0
y1/p0f∗(y)

dy

y

]p dx
x
.

Now thanks to the first Hardy inequality with r = p/p0 − 1 > 0 applied to y1/p0f∗(y)/y we have∫ ∞

0
[t1/q−1/q0∥f t∥Lp0 ]p

dt

t
≤ C ′

∫ ∞

0
x1−p/p0

[∫ x

0
y1/p0f∗(y)

dy

y

]p dx
x

≤ C ′′
∫ ∞

0
(y1/p0f∗(y))py−p/p0 dy

≤ C ′′
∫ ∞

0
f∗(y)p dy = C ′′∥f∗∥pLp([0,∞)) = C ′′∥f∥pLp(Rn).

(j) Prove (5) by a similar argument: first find an analog of (6) and then conclude by the
second Hardy inequality (Exercise 9.2).

Solution: We follow the steps from before: first we apply Exercise 9.1 with exponents p1 and
1 ≤ p1 to the non-increasing function (ft)

∗:

∥ft∥Lp1 (Rn) = ∥(ft)∗∥Lp1 ([0,∞)) =

(∫ ∞

0

[
y1/p1(ft)

∗(y)
]p1 dy

y

)1/p1

≤ C

∫ ∞

0

[
y1/p1(ft)

∗(y)
] dy

y
.

Now we use part (b), which allows us to split this integral:∫ ∞

0
y1/p1(ft)

∗(y)
dy

y
=

∫ tσ

0
y1/p1f∗(tσ)

dy

y
+

∫ ∞

tσ
y1/p1f∗(y)

dy

y
.

Notice that the first summand is just∫ tσ

0
y1/p1f∗(tσ)

dy

y
= p1f

∗(tσ)tσ/p1 .

Thus the Minkowski inequality gives(∫ ∞

0
[t1/q−1/q1∥ft∥Lp1 ]p

dt

t

)1/p

≤
(∫ ∞

0

[
t1/q−1/q1p1f

∗(tσ)tσ/p1
]p dt

t

)1/p

+

(∫ ∞

0

[
t1/q−1/q1

∫ ∞

tσ
y1/p1f∗(y)

dy

y

]p dt
t

)1/p

.

For the first term, using the change of variable x = tσ,∫ ∞

0

[
t1/q−1/q1p1f

∗(tσ)tσ/p1
]p dt

t
=

1

|σ|

∫ ∞

0

[
x1/p−1/p1p1f

∗(x)x1/p1
]p dx

x
= C

∫ ∞

0
f∗(x)pdx,

6 / 7



D-MATH
Prof. Tristan Rivière

Functional Analysis II
Sample Solutions Sheet 9

ETH Zürich
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and for the second term, using the same change of variable in addition to Exercise 9.2 with r =
1− p/p1 > 0 and the function y1/p1f∗(y)/y,∫ ∞

0

[
t1/q−1/q1

∫ ∞

tσ
y1/p1f∗(y)

dy

y

]p dt
t

=
1

|σ|

∫ ∞

0

[
x1/p−1/p1

∫ ∞

x
y1/p1f∗(y)

dy

y

]p dx
x

=
1

|σ|

∫ ∞

0
x1−p/p1

[∫ ∞

x
y1/p1f∗(y)

dy

y

]p dx
x

≤ C

∫ ∞

0
(y1/p1f∗(y))py1−p/p1−1 dy = C

∫ ∞

0
f∗(y)p dy.

Putting these two estimates together gives (5).

Exercise 9.4.
Prove the following maximal function estimate for functions f ∈ L logL(Rn): for any mea-
surable A ⊂ Rn with finite measure,∫

A

|Mf |(y) dy ≤ C

∫
Rn

|f |(y) log
(
e+ Ln(A)

|f |(y)|
∥f∥L1(Rn)

)
dy,

where C is a constant only depending on n. Here L logL is the space of functions f ∈ L1(Rn)
for which the right hand side is finite.

Hint: express the left hand side as an integral of the distribution function of |Mf | and use
inequality (5.9) from the script for large enough α (how large?).

Solution: See Theorem 5.8 in the script.
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