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Exercise 10.1.
Let 1 ≤ p < q ≤ ∞ and f ∈ Lp,∞(X,µ) ∩ Lq,∞(X,µ), where (X,µ) is a σ-finite measure
space (e.g. a measurable subset of Rn with the Lebesgue measure). Show that for every r
such that p < r < q, f ∈ Lr(X,µ) with

∥f∥Lr ≤
(

r

r − p
+

r

q − r

) 1
r

∥f∥1−θ
Lp,∞∥f∥θLq,∞ ,

where θ ∈ (0, 1) is defined by
1

r
=

1− θ

p
+

θ

q
.

Solution: We prove the statement for q < ∞ first. Notice that

|{|f | > λ}| ≤ min

(
∥f∥pLp,∞

λp
,
∥f∥qLq,∞

λq

)
.

Let us try to estimate the Lr norm of f :

∥f∥rLr = r

∫ ∞

0
λr−1|{|f | > λ}|dλ ≤ r

∫ ∞

0
λr−1min

(
∥f∥pLp,∞

λp
,
∥f∥qLq,∞

λq

)
dλ

≤ r

∫ B

0
λr−1 ∥f∥

p
Lp,∞

λp
dλ+ r

∫ ∞

B
λr−1 ∥f∥

q
Lq,∞

λq
dλ.

Here B ∈ (0,∞) is a constant to be determined. We have

r

∫ B

0
λr−1 ∥f∥

p
Lp,∞

λp
dλ = r∥f∥pLp,∞

∫ B

0
λr−1−p dλ =

r

r − p
∥f∥pLp,∞Br−p

and

r

∫ ∞

B
λr−1 ∥f∥

q
Lq,∞

λq
dλ = r∥f∥qLq,∞

∫ ∞

B
λr−1−q dλ =

r

q − r
∥f∥qLq,∞Br−q.

It is natural (and optimal, up to a constant) to choose B such that these two terms are equal. This
gives

∥f∥pLp,∞Br−p = ∥f∥qLq,∞Br−q =⇒ B =

(
∥f∥qLq,∞

∥f∥pLp,∞

) 1
q−p

and, substituting above, we get

∥f∥rLr ≤ r

r − p
∥f∥pLp,∞

(
∥f∥qLq,∞

∥f∥pLp,∞

) r−p
q−p

+
r

q − r
∥f∥qLq,∞

(
∥f∥qLq,∞

∥f∥pLp,∞

) r−q
q−p

=
r

r − p
∥f∥pLp,∞

(
∥f∥qLq,∞

∥f∥pLp,∞

) r−p
q−p

+
r

q − r
∥f∥qLq,∞

(
∥f∥qLq,∞

∥f∥pLp,∞

) r−q
q−p

.
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Now note that

q
r − p

q − p
= q

(
1 +

r − q

q − p

)
= rθ and p

q − r

q − p
= p

(
1− r − p

q − p

)
= r(1− θ),

so the above simplifies to

∥f∥rLr ≤ r

r − p
∥f∥r(1−θ)

Lp,∞ ∥f∥rθLq,∞ +
r

q − r
∥f∥rθLq,∞∥f∥r(1−θ)

Lp,∞

≤
(

r

r − p
+

r

q − r

)(
∥f∥θLq,∞∥f∥1−θ

Lp,∞

)r
.

The case q = ∞ is easier: denoting A := ∥f∥L∞ , we have

∥f∥rLr = r

∫ ∞

0
λr−1|{|f | > λ}|dλ = r

∫ A

0
λr−1|{|f | > λ}|dλ

≤ r

∫ A

0
λr−1 ∥f∥

p
Lp,∞

λp
dλ =

r

r − p
∥f∥pLp,∞Ar−p,

therefore

∥f∥Lr ≤
(

r

r − p

)1/r

∥f∥p/rLp,∞A1−p/r =

(
r

r − p

)1/r

∥f∥1−θ
Lp,∞∥f∥θL∞ .

Exercise 10.2.
Let f1, . . . , fN ∈ Lp,∞(X,µ) for 1 ≤ p < ∞. Show that∥∥∥∥∥

N∑
j=1

fj

∥∥∥∥∥
Lp,∞

≤ N
N∑
j=1

∥fj∥Lp,∞ .

Solution: For each λ > 0, one can easily see (by contradiction) that∣∣∣∣∣∣
N∑
j=1

fj

∣∣∣∣∣∣ > λ =⇒ |fj | > λ/N for at least one j.

Therefore

λ

∣∣∣∣∣∣

∣∣∣∣∣∣
N∑
j=1

fj

∣∣∣∣∣∣ > λ


∣∣∣∣∣∣
1/p

≤ λ

∣∣∣∣∣∣
N⋃
j=1

{|fj | > λ/N}

∣∣∣∣∣∣
1/p

≤ λ

 N∑
j=1

|{|fj | > λ/N}|

1/p

≤ N
λ

N

 N∑
j=1

|{|fj | > λ/N}|1/p
 ≤ N

N∑
j=1

∥fj∥Lp,∞ ,
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and we are done by taking the supremum over λ > 0. Here we have used the inequality (a1 +
· · · + aN )α ≤ aα1 + · · · + aαN , which holds whenever aj ≥ 0 and 0 < α ≤ 1. This can be proved by
induction iterating on the inequality aα + bα ≥ (a+ b)α. To show this, we compute the derivative

d

dt
(a+ t)α − tα = α

(
(a+ t)α−1 − tα−1

)
≤ 0,

using the fact that the function x 7→ xα−1 is nonincreasing for α ≤ 1. Therefore

(a+ b)α − bα ≤ (a+ 0)α − 0α = aα,

which is the desired inequality.

Exercise 10.3.
Let 0 < p < 1. Prove that Lp(X,µ) is a complete quasi-normed space, i.e. that ∥f∥Lp :=
(
∫
X
|f |p dµ)1/p defines a quasi-norm and every quasi-norm Cauchy sequence is quasi-norm

convergent.

Hint: recall the proof of the corresponding theorem for p ≥ 1.

Solution: First observe that (a+ b)p ≤ ap + bp whenever 0 < p < 1 (see the end of the solution of
Exercise 10.2) and, by Hölder’s inequality,

ap + bp = 1 · ap + 1 · bp ≤ (1 + 1)1−p
(
(ap)1/p + (bp)1/p

)p
= 21−p (a+ b)p ,

which implies that (A+B)1/p ≤ 21/p−1
(
A1/p +B1/p

)
. Therefore(∫

X
|f + g|p dµ

)1/p

≤
(∫

X
|f |p dµ+

∫
X
|g|p dµ

)1/p

≤ Kp

[(∫
X
|f |p dµ

)1/p

+

(∫
X
|g|p dµ

)1/p
]
.

with Kp = 21/p−1 ∈ (1,∞). This shows that ∥ · ∥Lp is a quasi-norm.

We claim the following inequality:

∥g1 + · · ·+ gN∥Lp ≤
N∑
j=1

Kj
p∥gj∥Lp .

This is clear for N = 1 and follows easily by induction for larger N .

Now let (fj) be a Cauchy sequence in Lp(X,µ) for this quasi-norm, and let (fjk) be a subsequence
such that

∥fjk+1
− fjk∥Lp ≤ (2Kp)

−k.

Consider the partial sums

gk :=

k−1∑
l=1

|fjl+1
− fjl |

k→∞−−−→
∞∑
l=1

|fjl+1
− fjl | =: g
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so that

∥gk∥Lp ≤
k−1∑
l=1

K l
p∥fjl+1

− fjl∥Lp ≤
k−1∑
l=1

K l
p(2Kp)

−l ≤ 1

and thus, by the monotone convergence theorem,∫
X
gp dµ = lim

k→∞

∫
X
gpk dµ = lim

k→∞
∥gk∥pLp ≤ 1.

This shows that the series
∑∞

l=1(fjl+1
− fjl) converges absolutely, and hence converges, almost

everywhere. Let us define

f(x) := fj1(x) +
∞∑
l=1

fjl+1
(x)− fjl(x)

for µ-a.e. x ∈ X. Clearly |f | ≤ |fj1 |+ g is the sum of two functions in Lp, so f ∈ Lp. Moreover,

|f − fjk |
p =

∣∣∣∣∣
∞∑
l=k

fjl+1
− fjl

∣∣∣∣∣
p

≤

( ∞∑
l=k

|fjl+1
− fjl |

)p

≤ gp ∈ L1,

so we may apply the Dominated Convergence Theorem and pass to the limit:

lim
k→∞

∥f − fjk∥
p
Lp = lim

k→∞

∫
X
|f − fjk |

p dµ =

∫
X
0 dµ = 0.

Finally, to prove the convergence of the whole sequence, let ε > 0 and choose i0 such that for every
i, j ≥ i0, ∥fi − fj∥Lp < ε/(2Kp). Choosing also k such that jk ≥ i0 so that ∥fjk − f∥Lp ≤ ε/(2Kp)
we conclude.

Exercise 10.4.
Consider the following N ! functions fσ : R → R, for σ ∈ SN , the group of permutations of
{1, 2, . . . , N}:

fσ :=
N∑
j=1

N

σ(j)
χ[ j−1

N
, j
N )

.

(a) Show that ∥fσ∥L1,∞ = 1.

Solution: It is clear that
λ|{fσ > λ}| (⋆)

is zero for λ ≥ 1, and is equal to λj/N when j is the largest integer ≤ N such that λ < N/j.
Therefore (⋆) is maximized when λ approaches N/j, giving for each j the value N

j · j
N = 1. Thus

∥fσ∥L1,∞ = 1.

(b) Show that ∥∥∥∥∥∑
σ∈Sn

fσ

∥∥∥∥∥
L1,∞

= N !

(
1 +

1

2
+ · · ·+ 1

N

)
.
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Solution: Clearly, for each x ∈ [0, 1) and for each j ∈ {1, . . . , N}, f(x) = N/j for exactly N !/N
choices of σ. Thus ∑

σ∈Sn

fσ(x) =
N !

N

(
N

1
+ · · ·+ N

N

)
= N !

(
1 +

1

2
+ · · ·+ 1

N

)
and therefore the sum is zero outside of [0, 1) and equal to this constant in [0, 1). It is immediate
to check then that the L1,∞ quasi-norm has the claimed value.

(c) Conclude that L1,∞(R) is not normable, i.e. that there is no norm ∥ · ∥ on L1,∞(R) such
that, for a constant C ≥ 1, C−1∥f∥ ≤ ∥f∥L1,∞ ≤ C∥f∥ holds for every f ∈ L1,∞(R).
Solution: Suppose that such a norm ∥ · ∥ and constant C exist. Then we would have

N !

(
1 +

1

2
+ · · ·+ 1

N

)
=

∥∥∥∥∥∑
σ∈Sn

fσ

∥∥∥∥∥
L1,∞

≤ C

∥∥∥∥∥∑
σ∈Sn

fσ

∥∥∥∥∥ ≤ C
∑
σ∈Sn

∥fσ∥

≤ C
∑
σ∈Sn

C ∥fσ∥L1,∞ = C2
∑
σ∈Sn

1 = N !C2.

Dividing by N ! and letting N → ∞ gives a contradiction.

Exercise 10.5.
For a measurable function g : Rn → [0,∞), denote by g∗ : [0,∞) → [0,∞) its decreasing
rearrangement.

(a) Prove that for every measurable set A ⊂ Rn,∫
A

g(x) dx ≤
∫ |A|

0

g∗(t) dt.

Solution: We obviously have that |{g|A > λ}| ≤ |{g > λ}|, and |{g|A > λ}| ≤ |A|, which implies
that (g|A)∗(t) ≤ g∗(t) for every t > 0 and (g|A)∗(t) = 0 for every t ≥ |A|, respectively. Hence∫

A
g(x) dx =

∫ ∞

0
(g|A)∗(t) dt =

∫ |A|

0
(g|A)∗(t) dt ≤

∫ |A|

0
g∗(t) dt.

(b) Show the Hardy–Littlewood inequality : for any measurable functions f, g : Rn → [0,∞),∫
Rn

f(x)g(x) dx ≤
∫ ∞

0

f ∗(t)g∗(t) dt.

Solution: Using part (a), by Tonelli’s theorem we have that∫
Rn

f(x)g(x) dx =

∫
Rn

∫ ∞

0
1f(x)>λdλ g(x) dx =

∫ ∞

0

∫
{f>λ}

g(x) dx dλ ≤
∫ ∞

0

∫ |{f>λ}|

0
g∗(t) dtdλ.
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Now observe that t < |{f > λ}| if and only if f∗(t) > λ (actually we only need the implication to
the right, which is immediate to verify). Thus, using again Tonelli, we may rewrite this integral as∫ ∞

0

∫ |{f>λ}|

0
g∗(t) dt dλ =

∫ ∞

0

∫ f∗(t)

0
g∗(t) dλ dt =

∫ ∞

0
f∗(t)g∗(t) dt.
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