Exercise 13.1. ★

(a) Show that for every $p \in [1, \infty]$ and $q \in [1, \infty]$, the space $L^p(\mathbb{R}^n, \ell^q)$ defines a Banach space.

(b) Show that for every $p \in (1, \infty)$ and $q \in (1, \infty)$, the dual of $L^p(\mathbb{R}^n, \ell^q)$ is $L^{p'}(\mathbb{R}^n, \ell^{q'})$.

Solution: See Proposition 8.4 in the script.

Exercise 13.2. **★**

The goal of this exercise is to prove Khinchine's inequality and see an application to Fourier analysis. This states the following: let $1 \le p < \infty$; then there exists a constant C = C(p) > 0 such that, for any $N \in \mathbb{N}$ and any $a_1, \ldots, a_N \in \mathbb{C}$, it holds that

$$C^{-1}\left(\sum_{j=1}^{N} |a_j|^2\right)^{p/2} \le \mathbb{E}\left[\left|\sum_{j=1}^{N} \epsilon_j a_j\right|^p\right] \le C\left(\sum_{j=1}^{N} |a_j|^2\right)^{p/2},$$

where $\mathbb{E}[\cdot]$ denotes the expectation with respect to the uniformly distributed random variable $(\epsilon_j)_{j=1,\dots,N} \in \{-1,+1\}^N$. In other words, it is the average of the expression inside the $[\cdot]$ over the 2^N possible choices of signs.

(a) Prove the upper bound of Khinchine's inequality.

Hint: you may use the following fact from probability: if N, (a_j) and (ϵ_j) are as above, then for every $\lambda > 0$,

$$\mathbb{P}\left[\left|\sum_{j=1}^{N} \epsilon_j a_j\right| > \lambda \left(\sum_{j=1}^{N} |a_j|^2\right)^{1/2}\right] \le 4e^{-\lambda^2/2}.$$

Combine this with the usual formula for the integral using upper level sets, but interchanging measures/integrals by probabilities/expectations.

Solution: We have that

$$\mathbb{E}\left[\left|\sum_{j=1}^{N} \epsilon_{j} a_{j}\right|^{p}\right] = \int_{0}^{\infty} \mathbb{P}\left[\left|\sum_{j=1}^{N} \epsilon_{j} a_{j}\right|^{p} > \mu\right] d\mu$$
$$= \left(\sum_{j=1}^{N} |a_{j}|^{2}\right)^{p/2} \int_{0}^{\infty} \mathbb{P}\left[\left|\sum_{j=1}^{N} \epsilon_{j} a_{j}\right|^{p} > \lambda^{p} \left(\sum_{j=1}^{N} |a_{j}|^{2}\right)^{p/2}\right] p\lambda^{p-1} d\lambda$$
$$\leq p \left(\sum_{j=1}^{N} |a_{j}|^{2}\right)^{p/2} \int_{0}^{\infty} 4e^{-\lambda^{2}/2} \lambda^{p-1} d\lambda$$
$$= C(p) \left(\sum_{j=1}^{N} |a_{j}|^{2}\right)^{p/2},$$

where we have used the change of variable $\mu = \left(\sum_{j=1}^{N} |a_j|^2\right)^{p/2} \lambda^p$.

(b) Prove the lower bound of Khinchine's inequality.

Hint: bound the expectation with p = 2 by the expectation with a higher p and a lower p by using Hölder's inequality, and then estimate the term with the higher p by using part (a). **Solution:** Observe that, when p = 2, by the independence of the ϵ_i ,

$$\mathbb{E}\left[\left|\sum_{j=1}^{N}\epsilon_{j}a_{j}\right|^{2}\right] = \mathbb{E}\left[\sum_{j,k=1}^{N}\epsilon_{j}\epsilon_{k}a_{j}\overline{a_{k}}\right] = \sum_{j=1}^{N}a_{j}\overline{a_{j}} = \sum_{j=1}^{N}|a_{j}|^{2}.$$

Therefore, by Hölder's inequality, the first inequality is trivial if $p \ge 2$. When $1 \le p < 2$ we compute, using Hölder's inequality for the expectation,

$$\sum_{j=1}^{N} |a_j|^2 = \mathbb{E}\left[\left|\sum_{j=1}^{N} \epsilon_j a_j\right|^2\right] \le \mathbb{E}\left[\left|\sum_{j=1}^{N} \epsilon_j a_j\right|^p\right]^{1/p} \mathbb{E}\left[\left|\sum_{j=1}^{N} \epsilon_j a_j\right|^{p'}\right]^{1/p'},$$

and apply part (a) for p' > 2:

$$\left[\left| \sum_{j=1}^{N} \epsilon_j a_j \right|^{p'} \right]^{1/p'} \le C \left[\left(\sum_{j=1}^{N} |a_j|^2 \right)^{p'/2} \right]^{1/p'} = C \left(\sum_{j=1}^{N} |a_j|^2 \right)^{1/2}$$

Simplifying gives the lower bound of the Khinchine inequality.

(c) Show that, given p > 2, there exist two functions $f, g : \mathbb{S}^1 \to \mathbb{C}$ such that the Fourier coefficients of f and g have the same absolute values, but such that $f \notin L^p(\mathbb{S}^1)$ and $g \in L^p(\mathbb{S}^1)$. Deduce that there is no characterization of belonging to L^p based on summability properties of the Fourier coefficients.

Solution: For a given p > 2, choose some $f \in L^2(\mathbb{S}^1) \setminus L^p(\mathbb{S}^1)$ and let $(\hat{f}_j)_{j \in \mathbb{Z}}$ be its Fourier coefficients. For any $N \in \mathbb{N}$ and $0 \le \theta < 2\pi$, apply Khinchine's inequality to the numbers $\hat{f}_j e^{ij\theta}$, $|j| \le N$:

$$\mathbb{E}\left[\left|\sum_{|j|\leq N}\epsilon_j \hat{f}_j e^{ij\theta}\right|^p\right] \leq \left(\sum_{|j|\leq N} |\hat{f}_j|^2\right)^{p/2}.$$

Integrating over θ and using the linearity of expectation, we get

$$\mathbb{E}\left[\int_{0}^{2\pi} \left|\sum_{|j| \le N} \epsilon_{j} \hat{f}_{j} e^{ij\theta}\right|^{p} \mathrm{d}\theta\right] = \int_{0}^{2\pi} \mathbb{E}\left[\left|\sum_{|j| \le N} \epsilon_{j} \hat{f}_{j} e^{ij\theta}\right|^{p}\right] \mathrm{d}\theta \le 2\pi \left(\sum_{|j| \le N} |\hat{f}_{j}|^{2}\right)^{p/2}$$

Therefore, for some choice of signs $\epsilon_{-N}^{(N)}, \ldots, \epsilon_{N}^{(N)}$ depending on N, we have that the function

 $g_N(\theta):=\sum_{|j|\leq N}\epsilon_j^{(N)}\hat{f}_je^{ij\theta}$ satisfies

$$\|g_N\|_{L^p(\mathbb{S}^1)} = \left(\int_0^{2\pi} |g_N(\theta)|^p \, \mathrm{d}\theta\right)^{1/p} \le (2\pi)^{1/p} \left(\sum_{|j|\le N} |\hat{f}_j|^2\right)^{1/2} \le (2\pi)^{1/p-1/2} \|f\|_{L^2(\mathbb{S}^1)}.$$

Now the sequence (g_N) is bounded in $L^p(\mathbb{S}^1)$ and therefore, after taking a subsequence, it converges weakly in L^p to some function $g \in L^p(\mathbb{S}^1)$ —using that for $2 the <math>L^p$ spaces are reflexive. On the other hand, by weak convergence, the Fourier coefficients of g satisfy

$$\hat{g}_j = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) e^{-ij\theta} \,\mathrm{d}\theta = \lim_{N \to \infty} \frac{1}{2\pi} \int_0^{2\pi} g_N(\theta) e^{-ij\theta} \,\mathrm{d}\theta = \lim_{N \to \infty} \epsilon_j^{(N)} \hat{f}_j,$$

and therefore $|\hat{g}_j| = |\hat{f}_j|$ for each j (notice that this implies that the signs $\epsilon_j^{(N)}$ eventually stabilize for each j such that $\hat{f}_j \neq 0$).

Exercise 13.3.

Let $1 and suppose that <math>T : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is a bounded linear transformation which commutes with translations. Show that there exists a function $m \in L^\infty(\mathbb{R}^n)$ such that

$$\widehat{Tf}(\xi) = m(\xi)\widehat{f}(\xi)$$
 for a.e. $\xi \in \mathbb{R}^n$

whenever $f \in L^2 \cap L^p$.

Hint: show this first for p = 2. For general p, argue by duality to conclude that T is also of type (p', p') and then apply the case p = 2.

Solution: For $v \in \mathbb{R}^n$, denote $\tau_v f(x) := f(x - v)$. We first claim that for any $f \in L^p(\mathbb{R}^n)$ and $g \in \mathcal{S}(\mathbb{R}^n)$, $T(f \star g) = (Tf) \star g$.

Recall that for $f \in \mathcal{S}'$ and $u \in \mathcal{E}'$, we characterized $f \star u \in \mathcal{S}'$ as

$$\langle f \star u, \varphi \rangle = \langle u, \check{f} \star \varphi \rangle \qquad \forall \varphi \in \mathcal{S}.$$

It is clear that $\check{f} \star \varphi \in C^{\infty}(\mathbb{R}^n)$, and if $u_j \rightharpoonup u$ in \mathcal{E}' , then by the above expression $f \star u_j \rightharpoonup f \star u$ in \mathcal{S}' . Given any function $g \in C_c^{\infty}(\mathbb{R}^n)$, the sequence

$$u_N := \frac{1}{N^n} \sum_{k \in \mathbb{Z}^n} g(k/N) \delta_{k/N} \in \mathcal{E}'(\mathbb{R}^n)$$

clearly converges in \mathcal{E}' to g. On the other hand, if $f \in L^p(\mathbb{R}^n)$, then $f \star u_N \in L^p(\mathbb{R}^n)$ with equibounded norm, because

$$\langle f \star u_N, \varphi \rangle = \langle u_N, \check{f} \star \varphi \rangle \le \|u_N\|_{\mathcal{M}} \|\check{f} \star \varphi\|_{C^0} \le (2K)^n \|g\|_{C^0} \|f\|_{L^p} \|\varphi\|_{L^{p'}} \qquad \forall \varphi \in \mathcal{S}$$

if g is supported in $(-K, K)^n$ for $K \in \mathbb{N}$. This together with Exercise 2.6(a) gives that also $f \star u_N \rightharpoonup f \star g$ in L^p .

Now writing $u_N = \sum_{j \in \mathbb{Z}^n} a_j \delta_{j/N}$, we have for each N (note that all the sums are finite because g has compact support):

$$T\left(f\star\sum_{j\in\mathbb{Z}^n}a_j\delta_{j/N}\right)=\sum_{j\in\mathbb{Z}^n}a_jT\left(\tau_{j/N}f\right)=\sum_{j\in\mathbb{Z}^n}a_j\tau_{j/N}(Tf)=(Tf)\star\left(\sum_{j\in\mathbb{Z}^n}a_j\delta_{j/N}\right),$$

which means that $T(f \star u_N) = (Tf) \star u_N$. When we send $N \to \infty$, the right hand side converges to $(Tf) \star g$ in \mathcal{S}' by the above discussion, whereas the left hand side converges to $T(f \star g)$ weakly in L^p because bounded linear operators send weakly converging sequences to weakly converging sequences. The claim now follows for $g \in C_c^{\infty}(\mathbb{R}^n)$, and for a general Schwartz function (even for an L^1 function) we obtain it by approximation and the continuity of the convolution $L^p \times L^1 \to L^p$.

Now we show that T is also bounded in the dual space: if $f, g \in C_c^{\infty}(\mathbb{R}^n)$, then

$$\begin{aligned} \langle g, Tf \rangle &= \int_{\mathbb{R}^n} g(x) Tf(x) \, \mathrm{d}x = (\check{g} \star Tf)(0) = T(\check{g} \star f)(0) = (T\check{g} \star f)(0) = \langle T\check{g}, \check{f} \rangle \\ &\leq \|T\check{g}\|_{L^p} \, \|\check{f}\|_{L^{p'}} \leq \|T\| \, \|\check{g}\|_{L^p} \, \|\check{f}\|_{L^{p'}} = \|T\| \, \|g\|_{L^p} \, \|f\|_{L^{p'}}. \end{aligned}$$

Taking the supremum over g gives that $||Tf||_{L^{p'}} \leq ||T|| ||f||_{L^{p'}}$, so by density T extends to a linear bounded operator $L^{p'}(\mathbb{R}^n) \to L^{p'}(\mathbb{R}^n)$. Now the Riesz–Thorin interpolation theorem gives that Tis also bounded from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$ (with the same norm), so for the rest of the proof it will be enough to characterize T acting on this space.

Denote by $M: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ the operator $M\hat{f} = \widehat{Tf}$, which is well-defined thanks to Plancherel and $||M|| = ||T||_{L^2 \to L^2}$. We claim that fMg = M(fg) for all $f, g \in \mathcal{S}(\mathbb{R}^n)$: since the Fourier transform is an isomorphism in \mathcal{S} , it is enough to show

$$M(\hat{f}\hat{g}) = (2\pi)^{-n/2} M\left(\widehat{f \star g}\right) = (2\pi)^{-n/2} \widehat{T(f \star g)} = (2\pi)^{-n/2} \widehat{f \star Tg} = \hat{f} \widehat{Tg} = \hat{f} M \hat{g}.$$

By density we also get $fMg = M(fg) \in L^2$ if $f \in L^2$ and $g \in S$.

Now fix a function $\chi \in C_c^{\infty}(B_2)$ with $\chi \equiv 1$ on B_1 and $\chi \geq 0$ everywhere. For R > 0, let $\chi_R(x) := \chi(x/R)$ and $m_R := M\chi_R \in L^2(\mathbb{R}^n)$. If $f \in L^1 \cap L^2$, we can write $f = \operatorname{sgn}(f)\sqrt{|f|} \cdot \sqrt{|f|}$, with $\sqrt{|f|} \in L^2$, and therefore

$$\int fm_R = \int \operatorname{sgn}(f)\sqrt{|f|}\sqrt{|f|} \cdot M\chi_R = \int \operatorname{sgn}(f)\sqrt{|f|} \cdot M(\sqrt{|f|}\chi_R)$$
$$\leq \left\|\operatorname{sgn}(f)\sqrt{|f|}\right\|_{L^2} \left\|M(\sqrt{|f|}\chi_R)\right\|_{L^2}$$
$$\leq \|T\| \left\|\sqrt{|f|}\right\|_{L^2}^2 = \|T\| \|f\|_{L^1}.$$

Taking the supremum over such f, and using the duality of L^1 and L^{∞} , we obtain that $m_R \in L^{\infty}$ with $||m_R||_{L^{\infty}} \leq ||T||$. Since $L^1(\mathbb{R}^n)$ is separable, by Banach–Alaoglu, for a sequence $R_j \to \infty$ we have that $m_{R_j} \stackrel{*}{\rightharpoonup} m$ in L^{∞} , for some $m \in L^{\infty}(\mathbb{R}^n)$.

We also have that for any $f \in L^2$, $\chi_R f \to f$ in L^2 as $R \to \infty$, so

$$M(f) = \lim_{R \to \infty} M(\chi_R f) = \lim_{R \to \infty} f M(\chi_R) = \lim_{R \to \infty} f m_R$$

in L^2 . Therefore, for any $g \in L^2(\mathbb{R}^n)$ it holds that

$$\int g M(f) = \lim_{j \to \infty} \int g f m_{R_j} = \int g f m,$$

and therefore Mf = mf, which is what we wanted to show. (Notice that actually the whole sequence $m_R \stackrel{*}{\rightharpoonup} m$: for any $f \in L^1 \cap L^2(\mathbb{R}^n)$ and $g \in L^2(\mathbb{R}^n)$,

$$\int gfm_R \xrightarrow{R \to \infty} \int gM(f) = \int gfm,$$

and we can write any L^1 function in the form gf as above.)