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Exercise 13.1. ⋆

(a) Show that for every p ∈ [1,∞] and q ∈ [1,∞], the space Lp(Rn, ℓq) defines a Banach
space.

(b) Show that for every p ∈ (1,∞) and q ∈ (1,∞), the dual of Lp(Rn, ℓq) is Lp′(Rn, ℓq
′
).

Solution: See Proposition 8.4 in the script.

Exercise 13.2. ⋆
The goal of this exercise is to prove Khinchine’s inequality and see an application to Fourier
analysis. This states the following: let 1 ≤ p < ∞; then there exists a constant C = C(p) > 0
such that, for any N ∈ N and any a1, . . . , aN ∈ C, it holds that

C−1

(
N∑
j=1

|aj|2
)p/2

≤ E

[∣∣∣∣∣
N∑
j=1

ϵjaj

∣∣∣∣∣
p]

≤ C

(
N∑
j=1

|aj|2
)p/2

,

where E[·] denotes the expectation with respect to the uniformly distributed random variable
(ϵj)j=1,...,N ∈ {−1,+1}N . In other words, it is the average of the expression inside the [·]
over the 2N possible choices of signs.

(a) Prove the upper bound of Khinchine’s inequality.

Hint: you may use the following fact from probability: if N , (aj) and (ϵj) are as above,
then for every λ > 0,

P
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(
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|aj|2
)1/2

 ≤ 4e−λ2/2.

Combine this with the usual formula for the integral using upper level sets, but interchanging
measures/integrals by probabilities/expectations.

Solution: We have that
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where we have used the change of variable µ =
(∑N

j=1 |aj |2
)p/2

λp.

(b) Prove the lower bound of Khinchine’s inequality.

Hint: bound the expectation with p = 2 by the expectation with a higher p and a lower p
by using Hölder’s inequality, and then estimate the term with the higher p by using part (a).

Solution: Observe that, when p = 2, by the independence of the ϵj ,

E

∣∣∣∣∣∣
N∑
j=1

ϵjaj

∣∣∣∣∣∣
2 = E

 N∑
j,k=1

ϵjϵkajak

 =
N∑
j=1

ajaj =
N∑
j=1

|aj |2.

Therefore, by Hölder’s inequality, the first inequality is trivial if p ≥ 2. When 1 ≤ p < 2 we
compute, using Hölder’s inequality for the expectation,

N∑
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,

and apply part (a) for p′ > 2:
∣∣∣∣∣∣
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ϵjaj
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.

Simplifying gives the lower bound of the Khinchine inequality.

(c) Show that, given p > 2, there exist two functions f, g : S1 → C such that the Fourier
coefficients of f and g have the same absolute values, but such that f /∈ Lp(S1) and g ∈
Lp(S1). Deduce that there is no characterization of belonging to Lp based on summability
properties of the Fourier coefficients.

Solution: For a given p > 2, choose some f ∈ L2(S1) \ Lp(S1) and let (f̂j)j∈Z be its Fourier

coefficients. For any N ∈ N and 0 ≤ θ < 2π, apply Khinchine’s inequality to the numbers f̂je
ijθ,

|j| ≤ N :

E

∣∣∣∣∣∣
∑
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ijθ

∣∣∣∣∣∣
p ≤
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.

Integrating over θ and using the linearity of expectation, we get

E

∫ 2π

0

∣∣∣∣∣∣
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|j|≤N

ϵj f̂je
ijθ

∣∣∣∣∣∣
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0
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.

Therefore, for some choice of signs ϵ
(N)
−N , . . . , ϵ

(N)
N depending on N , we have that the function
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gN (θ) :=
∑

|j|≤N ϵ
(N)
j f̂je

ijθ satisfies

∥gN∥Lp(S1) =

(∫ 2π

0
|gN (θ)|p dθ

)1/p

≤ (2π)1/p

∑
|j|≤N

|f̂j |2
1/2

≤ (2π)1/p−1/2 ∥f∥L2(S1).

Now the sequence (gN ) is bounded in Lp(S1) and therefore, after taking a subsequence, it converges
weakly in Lp to some function g ∈ Lp(S1)—using that for 2 < p < ∞ the Lp spaces are reflexive.
On the other hand, by weak convergence, the Fourier coefficients of g satisfy

ĝj =
1

2π

∫ 2π

0
g(θ)e−ijθ dθ = lim

N→∞

1

2π

∫ 2π

0
gN (θ)e−ijθ dθ = lim

N→∞
ϵ
(N)
j f̂j ,

and therefore |ĝj | = |f̂j | for each j (notice that this implies that the signs ϵ
(N)
j eventually stabilize

for each j such that f̂j ̸= 0).

Exercise 13.3.
Let 1 < p < ∞ and suppose that T : Lp(Rn) → Lp(Rn) is a bounded linear transformation
which commutes with translations. Show that there exists a function m ∈ L∞(Rn) such that

T̂ f(ξ) = m(ξ)f̂(ξ) for a.e. ξ ∈ Rn

whenever f ∈ L2 ∩ Lp.

Hint: show this first for p = 2. For general p, argue by duality to conclude that T is also of
type (p′, p′) and then apply the case p = 2.

Solution: For v ∈ Rn, denote τvf(x) := f(x − v). We first claim that for any f ∈ Lp(Rn) and
g ∈ S(Rn), T (f ⋆ g) = (Tf) ⋆ g.

Recall that for f ∈ S ′ and u ∈ E ′, we characterized f ⋆ u ∈ S ′ as

⟨f ⋆ u, φ⟩ = ⟨u, f̌ ⋆ φ⟩ ∀φ ∈ S.

It is clear that f̌ ⋆ φ ∈ C∞(Rn), and if uj ⇀ u in E ′, then by the above expression f ⋆ uj ⇀ f ⋆ u
in S ′. Given any function g ∈ C∞

c (Rn), the sequence

uN :=
1

Nn

∑
k∈Zn

g(k/N)δk/N ∈ E ′(Rn)

clearly converges in E ′ to g. On the other hand, if f ∈ Lp(Rn), then f ⋆ uN ∈ Lp(Rn) with
equibounded norm, because

⟨f ⋆ uN , φ⟩ = ⟨uN , f̌ ⋆ φ⟩ ≤ ∥uN∥M∥f̌ ⋆ φ∥C0 ≤ (2K)n∥g∥C0∥f∥Lp∥φ∥Lp′ ∀φ ∈ S

if g is supported in (−K,K)n for K ∈ N. This together with Exercise 2.6(a) gives that also
f ⋆ uN ⇀ f ⋆ g in Lp.
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Now writing uN =
∑

j∈Zn ajδj/N , we have for each N (note that all the sums are finite because g
has compact support):

T

f ⋆
∑
j∈Zn

ajδj/N

 =
∑
j∈Zn

ajT
(
τj/Nf

)
=
∑
j∈Zn

ajτj/N (Tf) = (Tf) ⋆

∑
j∈Zn

ajδj/N

 ,

which means that T (f ⋆ uN ) = (Tf) ⋆ uN . When we send N → ∞, the right hand side converges
to (Tf) ⋆ g in S ′ by the above discussion, whereas the left hand side converges to T (f ⋆ g) weakly
in Lp because bounded linear operators send weakly converging sequences to weakly converging
sequences. The claim now follows for g ∈ C∞

c (Rn), and for a general Schwartz function (even for
an L1 function) we obtain it by approximation and the continuity of the convolution Lp×L1 → Lp.

Now we show that T is also bounded in the dual space: if f, g ∈ C∞
c (Rn), then

⟨g, Tf⟩ =
∫
Rn

g(x)Tf(x) dx = (ǧ ⋆ Tf)(0) = T (ǧ ⋆ f)(0) = (T ǧ ⋆ f)(0) = ⟨T ǧ, f̌⟩

≤ ∥T ǧ∥Lp ∥f̌∥Lp′ ≤ ∥T∥ ∥ǧ∥Lp ∥f̌∥Lp′ = ∥T∥ ∥g∥Lp ∥f∥Lp′ .

Taking the supremum over g gives that ∥Tf∥Lp′ ≤ ∥T∥ ∥f∥Lp′ , so by density T extends to a linear

bounded operator Lp′(Rn) → Lp′(Rn). Now the Riesz–Thorin interpolation theorem gives that T
is also bounded from L2(Rn) to L2(Rn) (with the same norm), so for the rest of the proof it will
be enough to characterize T acting on this space.

Denote byM : L2(Rn) → L2(Rn) the operatorMf̂ = T̂ f , which is well-defined thanks to Plancherel
and ∥M∥ = ∥T∥L2→L2 . We claim that fMg = M(fg) for all f, g ∈ S(Rn): since the Fourier
transform is an isomorphism in S, it is enough to show

M(f̂ ĝ) = (2π)−n/2M
(
f̂ ⋆ g

)
= (2π)−n/2 ̂T (f ⋆ g) = (2π)−n/2f̂ ⋆ Tg = f̂ T̂ g = f̂Mĝ.

By density we also get fMg = M(fg) ∈ L2 if f ∈ L2 and g ∈ S.

Now fix a function χ ∈ C∞
c (B2) with χ ≡ 1 on B1 and χ ≥ 0 everywhere. For R > 0, let

χR(x) := χ(x/R) and mR := MχR ∈ L2(Rn). If f ∈ L1 ∩ L2, we can write f = sgn(f)
√
|f | ·

√
|f |,

with
√

|f | ∈ L2, and therefore∫
fmR =

∫
sgn(f)

√
|f |
√
|f | ·MχR =

∫
sgn(f)

√
|f | ·M(

√
|f |χR)

≤
∥∥∥sgn(f)√|f |

∥∥∥
L2

∥∥∥M(
√
|f |χR)

∥∥∥
L2

≤ ∥T∥
∥∥∥√|f |

∥∥∥2
L2

= ∥T∥ ∥f∥L1 .

Taking the supremum over such f , and using the duality of L1 and L∞, we obtain that mR ∈ L∞

with ∥mR∥L∞ ≤ ∥T∥. Since L1(Rn) is separable, by Banach–Alaoglu, for a sequence Rj → ∞ we

have that mRj

∗
⇀ m in L∞, for some m ∈ L∞(Rn).

We also have that for any f ∈ L2, χRf → f in L2 as R → ∞, so

M(f) = lim
R→∞

M(χRf) = lim
R→∞

fM(χR) = lim
R→∞

fmR
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in L2. Therefore, for any g ∈ L2(Rn) it holds that∫
gM(f) = lim

j→∞

∫
gfmRj =

∫
gfm,

and therefore Mf = mf , which is what we wanted to show. (Notice that actually the whole

sequence mR
∗
⇀ m: for any f ∈ L1 ∩ L2(Rn) and g ∈ L2(Rn),∫

gfmR
R→∞−−−−→

∫
gM(f) =

∫
gfm,

and we can write any L1 function in the form gf as above.)
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