Exercises 19.02.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

Exercise 1 (1.1.2). Let V be a real vector space. Show that the datum of a antisymmetric bilinear map $\omega : V \times V \to \mathbb{R}$ is equivalent to that of a linear map $\hat{\omega} : V \wedge V \to \mathbb{R}$ making the following diagram commute

where the vertical map sends (v, w) to $v \wedge w$.

Exercise 2 (1.1.4). Show that every symplectic vector space is isomorphic to $(\mathbb{R}^{2n}, \omega_0)$ for some *n*.

Exercise 3. Let A be a $(2n \times 2n)$ -matrix, and write it as

$$A = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix},$$

where X, Y, Z, and W are all $(n \times n)$ -matrices. Write down the equations on these $(n \times n)$ -matrices that are equivalent to $A \in \text{Symp}(n)$.

Exercise 4 (1.1.6). Show that Symp(1) is isomorphic as a (Lie) group to $SL(2; \mathbb{R})$.

Exercise 5 (1.2.1). Let M be a 2n-dimensional manifold. Show that a 2-form $\omega \in \Omega^2(M)$ is nondegenerate if and only if $\omega^n \in \Omega^{2n}(M)$ is nowhere vanishing.

Exercise 6 (1.2.4). Show that a closed manifold never admits an exact nondegenerate 2-form.

Exercise 7 (1.2.7). Let L be a n-dimensional manifold, and let $U \subseteq L$ an open such that $\pi : T^*L \to L$ is trivial over U, i.e. $\pi^{-1}(U)$ is isomorphic as a vector bundle to $U \times \mathbb{R}^n$. We define the **tautological 1-form** on $\pi^{-1}(U)$ as

$$\lambda_0|_{\pi^{-1}(U)} = \sum_{i=1}^n p_i dq_i,$$
(1)

where the q_i 's are coordinates in U and the p_i 's are the canonical coordinates of \mathbb{R}^n .

Show that (1) defines a global 1-form λ_0 on T^*L . Furthermore, show that λ_0 is the unique 1-form on T^*L such that

$$\sigma^*\lambda_0 = \sigma \qquad \forall \sigma \in \Omega^1(L),$$

where, on the LHS, we see σ as a map $L \rightarrow T^*L$.

Exercise 8 (1.2.13). Read the proof of Darboux's theorem in either McDuff and Salamon's Introduction to Symplectic Topology (Theorem 3.2.2 in the third edition) or da Silva's Lectures on Symplectic Geometry (Theorem 8.1).

Exercise 9 (1.3.1). Let *H* be a (time-dependent) function on a symplectic manifold (M, ω) . Show that there is a unique (time-dependent) vector field X_H such that

$$\iota_{X_H}\omega = -dH.$$

Exercise 10 (1.3.5). Let H be an autonomous Hamiltonian on a symplectic manifold (M, ω) , *i.e.* a function $H : M \to \mathbb{R}$. Show that its Hamiltonian flow $\{\varphi_H^t\}$ preserves its level sets, *i.e.* $H \circ \varphi_H^t = H \forall t$.

Exercise 11. Let (M, ω) is a closed symplectic manifold, and let H and G be Hamiltonians on M. Let also ψ be a symplectomorphism of M, i.e. a diffeomorphism such that $\psi^* \omega = \omega$.

(1) Show that the Hamiltonian H#G defined as

$$(H#G)_t := H_t + G_t \circ (\varphi_H^t)^{-1}$$

generates the isotopy $\{\varphi_t^H \circ \varphi_t^G\}$.

(2) Show that the Hamiltonian \overline{H} defined as

$$\overline{H}_t := -H_t \circ \varphi_t^H$$

generates the isotopy $\{(\varphi_t^H)^{-1}\}$.

(3) Show that the Hamiltonian ψ^*H defined as

$$(\psi^*H)_t := H_t \circ \psi$$

generates the isotopy $\{\psi^{-1} \circ \varphi_t^H \circ \psi\}$.

(4) Conclude that Ham(M), the set of Hamiltonian diffeomorphisms of M, is a normal subgroup of Symp(M), the group of symplectomorphisms of M.