Exercises 30.04.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

Exercise 1 (5.5.4, Lemma 5.5.3). Let X and Y be Banach spaces. Let $F : X \rightarrow Y$ be a continuous map that is differentiable at 0. Write

$$F(x) = F(0) + L(x) + N(x)$$

for $L := (dF)_0$. Suppose that there exists $G : Y \to X$ continuous such that

- (i) $L \circ G = \mathbb{1}_{Y}$;
- (*ii*) $||GN(x) GN(y)|| \le C(||x|| + ||y||) ||x y||$ for all $x, y \in B(0, r)$;
- (*iii*) $||GF(0)|| \leq \frac{\varepsilon}{2}$,

where C, r > 0 and $\varepsilon := \min\{r, \frac{1}{5C}\}$.

- (1) Show that the map $\varphi(x) = G(L(x) F(x))$ is a contraction on the ball $B(0, \varepsilon)$. Conclude that there is a unique $\alpha \in B(0, \varepsilon)$ such that $F(\alpha) = 0$.
- (2) Show that $||\alpha|| \le 2||GF(0)||$.
- (3) Consider the case where $X = Y = \mathbb{R}$ and $F = f : \mathbb{R} \to \mathbb{R}$ is twice differentiable at 0 with $f'(0) \neq 0$. Show that $G(x) = \frac{x}{f'(0)}$ satisfies the above hypotheses for some C, r > 0 — if |f(0)| is small enough (when compared to |f'(0)|), or if $\lim_{x\to\pm\infty} \frac{f(x)}{x^2} = 0$. Conclude that the classical Newton method converges in those cases.

Exercise 2 (5.6.1). Show that a proper, injective immersion is an embedding. Show that any immersion into a 1-dimensional manifold is injective.