Exercises 12.03.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

Exercise 1 (2.7.4). Using Proposition 2.3.3 and Exercise 2 of 26.02.2025, show that \mathcal{A}_H has finitely many critical points whenever H is nondegenerate.

Exercise 2 (Hard). Let $U \subseteq \mathbb{T}^n$ be open, where $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ is the flat *n*-torus. We define a topology on $C^k(U, \mathbb{R}^m)$ as follows. For any compact $K \subseteq U$ and any $r \leq k$, take the pseudo-norm on $C^k(U, \mathbb{R}^m)$ defined by

$$||f||_K^r := \sup_{x \in K} |(\nabla^r f)(x)|,$$

where $\nabla^r f : U \to \mathbb{R}^{n^r m}$ is the r-th iterate of the gradient of f, i.e. its coordinates are all the possible derivatives of f of order r. Then, a subset W of $C^k(U, \mathbb{R}^m)$ is **open** if and only if, for every $f \in W$, there is a $\varepsilon > 0$, a compact $K \subseteq U$, and some $k_0 < \min\{k+1, +\infty\}$ such that

 $\left\{g \in C^k(U, \mathbb{R}^m) \mid ||f - g||_K^r < \varepsilon \; \forall r \le k_0\right\} \subseteq \mathcal{W}.$

Show that this makes $C^k(U, \mathbb{R}^m)$ into a Fréchet vector space and that the topology correspond to the C_{loc}^k one defined in class.

When $U = \mathbb{T}^n$ and $k < +\infty$, use the pseudo-norms $|| \cdot ||_K^r$ to construct a norm $|| \cdot ||_{C^k}$ on $C^k(\mathbb{T}^n, \mathbb{R}^m)$ making it into a Banach space. For general U — but still $k < +\infty$ — construct a similar norm on the subspace $C_0^k(U, \mathbb{R}^m)$ of compactly supported functions. Show that the topology induced by these norms are the same as the one defined above.

Exercise 3 (2.7.8). Construct a metric d_{∞} on $\mathcal{L}M$ inducing the C^{∞} topology.