Exercises 19.03.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

Exercise 1 (2.7.12; Lemma 2.7.11). Let $g : X \to \mathbb{R}$ be continuous, where X is a complete metric space with metric d. Take $x_0 \in X$ and $\varepsilon_0 > 0$. Prove that there exist $x \in X$ and $\varepsilon \in (0, \varepsilon_0]$ such that

Exercise 2 (Some complex geometry). Consider the complex curve

$$\Sigma':=\{y^2=4x^3-x-1\}\subseteq \mathbb{C}^2$$

and the holomorphic map

$$u'_{\alpha}: \Sigma' \longrightarrow \mathbb{C}^{2}$$
$$(x, y) \longmapsto (\alpha^{2}x, \alpha^{3}y)$$

for $\alpha \in (0, 1]$.

- (1) Show that Σ' extends to a complex curve Σ in $\mathbb{C}P^2$ and that u'_{α} extend to a holomorphic map $u_{\alpha} : \Sigma \to \mathbb{C}P^2$.
- (2) Show that Σ is topologically a torus.
 Hint: Use the equation defining Σ' to construct a 2:1 branched cover to C with 3 branch points, and extend it to Σ → CP¹ = S² (now with 4 branch points).
- (3) Illustrate why the images of u_{α} converge to the wedge product of a torus with a sphere as $\alpha \to 0$.

Exercise 3 (3.1.1). *Prove that* Symp(*n*) *is a Lie group of dimension* n(2n + 1). *Hint:* Consider the map $A \mapsto A^T J_0 A$.

Exercise 4 (3.1.9). For $t \ge 0$ and A, a positive definite symmetric $n \times n$ matrix, define A^t to be the unique $n \times n$ matrix such that

 $Av = \lambda v \qquad \Longleftrightarrow \qquad A^t v = \lambda^t v.$

Show that A^t is positive definite and symmetric for all t. If A is furthermore symplectic, show that A^t also is.

Exercise 5. Using the description of the generalized eigenspaces of a symplectic matrix of Corollary 3.1.7, show directly — that is, without using path connectedness — that every such matrix has determinant 1.