Exercises 26.03.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

Exercise 1 (3.2.4). Check that if H is autonomous and $x \in Crit(H)$, then the path of symplectic matrices associated to x and a trivialization $\Psi : T_x M \to \mathbb{R}^{2n}$ such that $\Psi^* J_0 = J_x$ and $\Psi^* \omega_0 = \omega_x$ is given by

$$A(t) = e^{tJ_0 \operatorname{Hess}_x},$$

where Hess_x is the symmetric matrix defined via $(\operatorname{Hess} H)_x(v, w) = (\operatorname{Hess}_x \Psi(v)) \cdot \Psi(w)$. Conclude that if x is nondegenerate and and $|\operatorname{Hess}_x|^{op} < 2\pi$, then 1 is not an eigenvalue of A(1).

Hint for the first part: Write A using Darboux coordinates, and show that it solves the appropriate differential equation.

Exercise 2 (3.2.6). *Let*

$$U = \begin{pmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix} \quad and \quad S = \begin{pmatrix} 4 & 0 \\ 0 & \frac{1}{4} \end{pmatrix}.$$

Check that A = US *is symplectic and that* $\rho(A) \neq \det_{\mathbb{C}} U$ *.*

Exercise 3. *Verify that the path defined by*

$$A(t) = \begin{pmatrix} 1 + 4\pi^2 t^2 & 2\pi t \\ 2\pi t & 1 \end{pmatrix}$$

is in *S*, and compute its Maslov index.

Exercise 4 (3.3.3). Show that if S is a 2×2 invertible symmetric matrix with $|S|^{op} < 2\pi$, then

$$\mu\left(t\mapsto e^{tJ_0S}\right)=\mathrm{Ind}(S)-1,$$

where Ind(S) is the number of negative eigenvalues of S.

Hint: Ind(*S*) only depends on the connected component that *S* belongs to in the space of invertible symmetric matrices and μ is invariant under homotopies through paths starting at 1 and ending in Symp(n)^{*}. Use this to reduce to a choice of *S* that is easy to compute.