Exercises 02.04.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

Exercise 1 (4.5.1). Let $J : M \to End(TM)$ and $X : M \to TM$ be sections of their respective bundles, and let Y be some tangent vector to M. Show that

$$dJ(Y) \cdot X = d(JX)(Y) - J \cdot dX(Y).$$

Exercise 2 (4.5.4). Show that the equation

$$\frac{\partial Y}{\partial t} = J_0 S^{\pm} Y$$

is the linearization of Hamilton's equation $\dot{z}_{\pm} = X_H(z)$ at $z_{\pm} = \lim_{s \to \pm \infty} u(s)$. Here, S^{\pm} is the limit as $s \to \pm \infty$ of the operator S defined by the linearized Floer operator $d\mathcal{F}_u = \bar{\partial} + S$ at u, where $\bar{\partial}$ is the Cauchy-Riemann operator.

Exercise 3 (Some basic Fredholm theory). *A continuous linear map* $L : E \rightarrow F$ *between Banach spaces is called* Fredholm *if* Ker *L and* Coker *L are finite dimensional. In that case, we define its* index *as*

Ind
$$L := \dim \operatorname{Ker} L - \dim \operatorname{Coker} L$$
.

Show that the following holds.

- (1) If *E* and *F* have finite dimension, then $\operatorname{Ind} L = \dim E \dim F$.
- (2) If $L' : E' \to F'$ is another Fredholm operator, then $L \oplus L' : E \oplus E' \to F \oplus F'$ is Fredholm and $\operatorname{Ind}(L \oplus L') = \operatorname{Ind} L + \operatorname{Ind} L'$.
- (3) If *H* has finite dimension, then $L \otimes \mathbb{1}_H$ is Fredholm and $Ind(L \otimes \mathbb{1}_H) = (\dim H) Ind L$.
- (4) If $L' : F \to G$ is another Fredholm operator, then $L' \circ L : E \to G$ is Fredholm and $Ind(L' \circ L) = Ind L + Ind L'$.