Exercises 16.04.2025

Optional exercises for the lecture *Introduction to Floer homology* (401-3584-25L) Semester: Spring 2025 Lecturer: Dr. Jean-Philippe Chassé

This exercise series is less directly related to what has been done in class, but it serves to give a better understanding of what a Fredholm operator is.

Exercise 1. Let $L : E \to F$ be linear and continuous between Banach spaces. Show that L is Fredholm if and only if there exists $L' : F \to E$ linear and continuous such that $L \circ L' - \mathbb{1}_F$ and $L' \circ L - \mathbb{1}_E$ have finite rank, i.e. their image is finite dimensional.

Check that L' may be chosen so that $L \circ L' \circ L = L$. Use Exercise 3 of 02.04.25 to conclude that Ind(L') = -Ind(L) for such a choice.

Hint: Vector subspaces of finite dimension or codimension admit complements.

Exercise 2. Let $u : E \to F$ be a continuous linear map between Banach spaces, and let $L : E \to F$ be Fredholm. Suppose that u has finite rank. Show that L + u is Fredholm and that Ind(L + u) = Ind(L).

Use this to conclude that, for L' *as in Exercise 1, we always have that* Ind(L') = -Ind(L)*.*

Exercise 3. Let $K : E \to E$ be a compact operator on a Banach space. Show that $L = \mathbb{1}_E + K$ is Fredholm.

Hint: To study the kernel of L, consider $\mathbb{1}_E|_{\text{Ker }L}$. To study its cokernel, consider the dual map $L^* : E^* \to E^*$.

Exercise 4. Let $L : E \to F$ be linear and continuous between Banach spaces. Show that L is Fredholm if and only if there exists $L' : F \to E$ linear and continuous such that $L \circ L' - \mathbb{1}_F$ and $L' \circ L - \mathbb{1}_E$ are compact operators.

Hint: *Finite-rank* operators are compact.

We usually call *L*′ as above a *Fredholm inverse* of *L*.

Exercise 5 (Theorem 4.9.2). Let $L : E \to F$ be a Fredholm operator, and let L' be as in *Exercise 1*. Show that, for every $u : E \to F$ linear continuous with norm $||u|| < ||L'||^{-1}$, the operator L + u is Fredholm and Ind(L + u) = Ind(L).

Hint: If $A : E \to E$ is linear continuous with ||A|| < 1, then $\mathbb{1}_E + A$ is invertible.

Exercise 6. Let $L : E \to F$ be a Fredholm operator, and let $K : E \to F$ be a compact one. Show that L + K is Fredholm and that Ind(L + K) = Ind(L). Conclude that, if L' is a Fredholm inverse of L, then Ind(L') = -Ind(L).