Applied Stochastic Processes

Exercise sheet 10

Quiz 10.1

- (a) Let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be non-increasing and integrable. Let g be the solution of the (h, F) renewal equation. Which of the following are true?
 - 1. $g = h + h \star m$.
 - 2. g + 10 is also a solution of the (h, F) renewal equation.
 - 3. g + 10 is the solution of the (h + 10, F) renewal equation.
 - 4. g + 10 + 10F is a solution of the (h + 10, F) renewal equation.
 - 5. g + m is a solution of the (h + F, F) renewal equation.
- (b) Let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be non-increasing and integrable. Let g be the solution of the (h, F) renewal equation. Which of the following are true?
 - 1. g(t) is eventually constant if and only if h is eventually zero.
 - 2. For F lattice, g satisfies $\lim_{t\to\infty} g(t) = \frac{1}{\mu} \int_0^\infty h(u) du$.
 - 3. For F non-lattice, g is the unique function that satisfies $\lim_{t\to\infty} g(t) = \frac{1}{\mu} \int_0^\infty h(u) du$ and solves the renewal equation.
 - 4. If F is lattice with span d > 0, then g(t) converges to some constant.
 - 5. For F non-lattice, we have that $g(t+s) = h(t+s) + \int_0^{t+s} g(t+s-x) dF(x)$

Exercise 10.2 [1 + m(t) is subadditive]

Prove that the function u(t) = 1 + m(t) is subadditive. This is, prove that, for all $t, s \ge 0$, we have that $m(t+s) \le 1 + m(t) + m(s)$.

Exercise 10.3 [Age process - follow-up]

Let $(N_t)_{t\geq 0}$ be a renewal process with arrival distribution F. Recall that the age process $(A_t)_{t\geq 0}$ of $(N_t)_{t\geq 0}$ is defined by

$$A_t = t - S_{N_t}.$$

For $x \ge 0$, we set $a_x(t) = \mathbb{P}[A_t \le x]$ for $t \ge 0$. In Exercise 9.3, it was shown that a_x satisfies the renewal equation $a_x = h_x + a_x * F$, where $h_x(t) = \mathbb{1}_{\{t \le x\}}(1 - F(t))$.

(a) Assume that F is non-lattice. Compute

$$\lim_{t \to \infty} a_x(t)$$

Hint: Apply Smith's key renewal theorem.

(b) Deduce that A_t converges in distribution to some random variable A_{∞} as $t \to \infty$.

Exercise 10.4 [Cycles of operation and repair of a machine - follow-up] Let $(U_i, V_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables with $U_i \geq 0$, $V_i \geq 0$. Assume that $T_i = U_i + V_i$ is not almost surely equal to 0 and denote by F its distribution function. We interpret U_i and V_i as alternating periods when a given machine is operational or in repair. The period U_1 begins at time 0. For $t \ge 0$ we define $Y_t = 1$ if the machine is operational at time t and $Y_t = 0$ otherwise. Let $g(t) = \mathbb{P}[Y_t = 1]$ denote the probability of the machine being operational at time $t \ge 0$, and g(t) = 0 for t < 0. We also define $h(t) = \mathbb{P}[U_1 > t]$. In Exercise 9.4, it was shown that for $t \ge 0$,

$$g(t) = h(t) + \int_0^t g(t-s)dF(s),$$

i.e. that g is the solution of the (h, F)-renewal equation.

(a) Assume that $\mathbb{E}[U_1] < \infty$ and that F is non-lattice. Show that the function h is non-increasing and integrable and conclude that

$$\lim_{t \to \infty} g(t) = \frac{\mathbb{E}[U_1]}{\mathbb{E}[U_1] + \mathbb{E}[V_1]}$$

Exercise 10.5 [Poisson approximation]

Let $(p_n)_{n>0}$ be a sequence of parameters $(p_n \in [0,1])$ and $\lambda \in (0,\infty)$ such that

$$\lim_{n \to \infty} n p_n = \lambda.$$

For every $n \ge 1$, let $X_n \sim Bin(n, p_n)$. Prove that X_n converges in distribution to a Poissondistributed random variable X with parameter λ , i.e.

$$X_n \xrightarrow{(\mathrm{d})} X \sim \operatorname{Pois}(\lambda) \quad \text{as } n \to \infty.$$

Hint: Consider $\mathbb{P}[X_n = k]$ for fixed $k \ge 0$ and show that it converges to $\frac{e^{-\lambda}}{k!}\lambda^k$.

Submission deadline: 10:15, May 6.

Please submit your solutions online before the beginning of the lecture. Further information is available on: https://metaphor.ethz.ch/x/2025/fs/401-3602-00L/