Applied Stochastic Processes

Exercise sheet 11

Quiz 11.1

- (a) Let U be a uniformly distributed random variable taking values in [0, 5]. Which of the following statements are correct?
 - 1. δ_U is a point process on $([0, 5], \mathcal{B}([0, 5]))$.
 - 2. $2 \cdot \delta_U$ is a point process on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - 3. δ_{2U} is a point process on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - 4. U is a point process on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - 5. $\frac{1}{2}\delta_U + \frac{1}{2}\delta_{-U}$ is a point process on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- (b) Which of the following are correct?
 - 1. If $X \sim \text{Poisson}(\lambda)$, then the characteristic function $\varphi_X(t) = \exp(\lambda(it-1))$ uniquely determines the distribution of X.
 - 2. Let $X_n \sim \text{Poisson}(\lambda_n)$ with $\lambda_n \to \infty$. Then $\frac{X_n \lambda_n}{\sqrt{\lambda_n}}$ converges in distribution to a standard normal random variable.
 - 3. Consider a family of independent random variables with $X_n \sim \text{Poisson}(1/n)$. Then, the sequence X_n converges in probability to zero.
 - 4. The conditional distribution of a Poisson variable $X \sim \text{Poisson}(\lambda)$, given X > 0, is still a Poisson distribution.
 - 5. Let $M, N \sim \text{Poisson}(1)$ be two independent random variables. Then:

 $\mathbb{P}(M \text{ is odd}, N \text{ is odd}) = \mathbb{P}(M \text{ is even}, N \text{ is even}, M + N \neq 0)$

Exercise 11.2 [Sums of independent Poisson random variables]

(a) Consider $k \ge 1$ and $\lambda_1, \ldots, \lambda_k \in [0, \infty)$. Let $X_i \sim \text{Pois}(\lambda_i), 1 \le i \le k$, be independent random variables. Show that

$$X_1 + \ldots + X_k \sim \operatorname{Pois}(\lambda_1 + \ldots + \lambda_k).$$

(b) Consider $(\lambda_i)_{i\geq 1}$ with $\lambda_i \in [0,\infty]$, $i\geq 1$, and set $\lambda := \sum_{i=1}^{\infty} \lambda_i$. Let $X_i \sim \text{Pois}(\lambda_i)$, $i\geq 1$, be independent random variables. Show that

$$X := \sum_{i=1}^{\infty} X_i \sim \operatorname{Pois}(\lambda).$$

Recall the convention that $X \sim Pois(\infty)$ if and only if $X = +\infty$ almost surely.

Exercise 11.3 [Measurable modification of a point process]

Let M be a point process on (E, \mathcal{E}) . Recall that $M \in \mathcal{M}$ almost surely, where

 $\mathcal{M} = \{ \text{sigma-finite measures } \eta \text{ on } E \text{ such that } \forall B \in \mathcal{E}, \, \eta(B) \in \mathbb{N} \cup \{+\infty\} \}.$

Let G be such that $G \subset \{M \in \mathcal{M}\}$ and $\mathbb{P}(G) = 1$, and define:

$$\widetilde{M}(\omega) = \begin{cases} M(\omega) & \text{if } \omega \in G, \\ 0 & \text{if } \omega \notin G. \end{cases}$$

Show that:

1. \overline{M} is a random variable in $(\mathcal{M}, \mathcal{B}(\mathcal{M}))$, where $\mathcal{B}(\mathcal{M})$ is the sigma algebra generated by the sets of the form

$$C_{k,B} = \{ \eta \in \mathcal{M} : \eta(B) = k \}, \quad k \in \mathbb{N}, B \in \mathcal{E}.$$

2. Define P_M to be the law of \widetilde{M} as a random variable in $(\mathcal{M}, \mathcal{B}(\mathcal{M}))$. Show that this law is the same for all choices of the set G.

Exercise 11.4 [Law of a point process]

Consider two point processes M and M' on (E, \mathcal{E}) , and denote their laws by P_M respectively $P_{M'}$. Show that the following statements are equivalent:

- (i) $P_M = P_{M'}$
- (ii) For all $A \in \mathcal{B}(\mathcal{M})$,

$$\mathbb{P}[\tilde{M} \in A] = \mathbb{P}[\tilde{M'} \in A]$$

(iii) For all $k \geq 1, B_1, \ldots, B_k \in \mathcal{E}$, and $n_1, \ldots, n_k \in \mathbb{N}$,

$$\mathbb{P}[M(B_1) = n_1, \dots, M(B_k) = n_k] = \mathbb{P}[M'(B_1) = n_1, \dots, M'(B_k) = n_k].$$

(iv) For all $k \geq 1, C_1, \ldots, C_k \in \mathcal{E}$ disjoint, and $n_1, \ldots, n_k \in \mathbb{N}$,

$$\mathbb{P}[M(C_1) = n_1, \dots, M(C_k) = n_k] = \mathbb{P}[M'(C_1) = n_1, \dots, M'(C_k) = n_k].$$

Submission deadline: 10:15, May 13.

Please submit your solutions online before the beginning of the lecture. Further information is available on: https://metaphor.ethz.ch/x/2025/fs/401-3602-00L/