Applied Stochastic Processes

Exercise sheet 12

Quiz 12.1

- (a) Which of the following are correct?
 - 1. Let M be a Poisson point process on $\mathbb{R} \times [0,2]$ with intensity measure $\mu = \text{Leb}$, and let $T: (x_1, x_2) \mapsto x_1$. T # M is a Poisson point process on \mathbb{R} .
 - 2. Let M be a Poisson point process on \mathbb{R}^2 with intensity measure $\mu =$ Leb, and let $T: (x_1, x_2) \mapsto x_1$. T # M is a Poisson point process on \mathbb{R} .
 - 3. Let *M* be a Poisson point process on $[0,2]^2$ with intensity measure $\mu = \text{Leb}$, and let $T: (x_1, x_2) \mapsto x_1/2$. T # M is a Poisson point process on [0,1].
 - 4. Let M be a Poisson point process on \mathbb{R}^2 with intensity measure $\mu =$ Leb, and let $T: (x_1, x_2) \mapsto (2x_2, 2x_1)$. T # M is a Poisson point process on \mathbb{R}^2 .
 - 5. Let M be a Poisson point process on $\mathbb{R} \times [0, \infty)$ with intensity measure $\mu = \text{Leb}$. Then the restricted process $M_{[0,1]^2}$, $M_{[0,2]^2}$, and $M_{[2,3]^2}$ are Poisson point processes.
- (b) Let M be a Poisson point process on (E, \mathcal{E}) with (σ -finite) intensity measure μ and let M' be a Poisson point process on (F, \mathcal{F}) with (σ -finite) intensity measure ν . Define N via the product measure $N(\omega) := M(\omega) \otimes M'(\omega)$ on $(E \times F, \mathcal{E} \otimes \mathcal{F})$. Which of the following are correct?
 - 1. N assigns positive mass to rectangles $A \times B$ if and only if M(A) > 0 and M'(B) > 0.
 - 2. N is a σ -finite measure almost surely.
 - 3. N is a point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$.
 - 4. *N* is a Poisson point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$.
 - 5. If M and M' are independent, then N is a Poisson point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$.

Exercise 12.2 [Simple Poisson point process I]

A measure ν on (E, \mathcal{E}) is *diffuse* if

$$\forall x \in E, \ \nu(\{x\}) = 0,$$

and we call it *simple* if

$$\forall x \in E, \ \nu(\{x\}) \leq 1$$

Let M be a Poisson point process on (E, \mathcal{E}) with intensity measure μ . In this exercise, we show that

$$\mu$$
 is diffuse \implies M is simple a.s..

From now on, assume that μ is diffuse, and let $(E_i)_{i \in \mathbb{N}}$ be a partition of E such that each E_i is measurable and satisfies $\mu(E_i) < \infty$.

- (a) Show that the restricted measures μ_1, μ_2, \ldots are diffuse and that M_{E_1}, M_{E_2}, \ldots are independent Poisson point processes with respective intensities $\mu_{E_1}, \mu_{E_2}, \ldots$
- (b) Show that for every $i \in \mathbb{N}$, M_{E_i} is almost surely simple.

Hint: Using the explicit construction of M_{E_i} from Proposition 7.10, prove that $\sum_{i=1}^{Z} \delta_{X_i}$ is almost surely simple.

(c) Deduce that M is almost surely simple.

Exercise 12.3 [Simple Poisson point process II]

- (a) Let M be a Poisson point process on $\mathbb{R} \times [0, \infty)$ with intensity measure $\mu =$ Leb. Is the process almost surely simple?
- (b) Let M be a Poisson point process on \mathbb{R} with intensity measure μ given by $\mu(B) = |B \cap \mathbb{Z}|$ for $B \in \mathcal{B}(\mathbb{R})$. Is the process almost surely simple?

Exercise 12.4 [Mapping]

Let M be a Poisson point process on \mathbb{R}^d with intensity measure $\mu = \lambda \cdot \text{Leb}(\mathbb{R}^d)$, where $\lambda > 0$. Let B_r the ball of radius r around the origin.

- (a) Consider the map $T : \mathbb{R}^d \to [0, \infty)$ defined by $x \mapsto ||x||_2 := \sqrt{x_1^2 + \ldots + x_d^2}$. Determine the intensity measure of the Poisson point process T # M.
- (b) Prove that a.s.

$$\lim_{r \to \infty} \frac{M(B_r)}{|B_r|} = \lambda$$

where $|B_r|$ is the volume of B_r .

Hint: Consider a sequence $(r_k)_{k\geq 0}$ with $|B_{r_k}| = k$ and study $M(B_{r_k} \setminus B_{r_{k-1}})$, the number of points in the annuli $(B_{r_k} \setminus B_{r_{k-1}})_{k\geq 1}$.

Exercise 12.5 [Poisson point processes on discrete spaces]

Let *E* be a finite or countable set, and let *d* be a metric on *E* such that the corresponding Borel σ -algebra is $\mathcal{P}(E)$ (the power set of *E*). Let μ be a measure on *E* such that $\mu(\{x\}) < \infty$ for every $x \in E$.

Prove that:

$$M$$
 is a ppp $(\mu) \iff \left(\exists (N_x)_{x \in E} \text{ independent with } N_x \sim \operatorname{Poi}(\mu(\{x\})) \text{ such that } M = \sum_{x \in E} N_x \delta_x \right).$

Submission deadline: 10:15, May 20.

Please submit your solutions online before the beginning of the lecture. Further information is available on: https://metaphor.ethz.ch/x/2025/fs/401-3602-00L/